• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Stochastic Analysis on Infinite Dimensional Spaces from a Geometric View

Research Project

  • PDF
Project/Area Number 20K03639
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKeio University

Principal Investigator

KAWABI Hiroshi  慶應義塾大学, 経済学部(日吉), 教授 (80432904)

Co-Investigator(Kenkyū-buntansha) 石渡 聡  山形大学, 理学部, 准教授 (70375393)
楠岡 誠一郎  京都大学, 理学研究科, 教授 (20646814)
星野 壮登  大阪大学, 大学院基礎工学研究科, 准教授 (20823206)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords確率論 / 確率解析 / 確率偏微分方程式 / ラフパス理論 / 離散幾何解析 / 大域解析学 / マリアヴァン解析 / ディリクレ形式
Outline of Final Research Achievements

(1) With Masato Hoshino and Seiichiro Kusuoka, I constructed a unique strong solution of singular stochastic partial differential equations which realize stochastic quantization of exp(Φ)_{2} quantum fields. We proposed a new method using peculiarity of the exponential model. The relation with Dirichlet form is also clarified.

(2) As a preparation for the discrete geometric study of quantum fields, I studied a discrete approximation of Schroedinger semigroup with drift on noncompact Riemannian manifolds with Satoshi Ishiwata. This study is regarded as a finite dimensional summation approximation of the Feynman-Kac functional integral on manifolds, and is interesting from the viewpoints of not only global analysis but also stochastic numerical analysis and manifold learning.

Free Research Field

数物系科学

Academic Significance and Societal Importance of the Research Achievements

近年の特異確率偏微分方程式の理論の進展により, 無限次元空間上の確率解析と構成的場の量子論の数学的研究の融合が進んでいるが, 本研究で得られた成果は, その中でも中心的なexp(Φ)_{2}-モデルの数学解析における基礎定理である。また, リーマン多様体上のドリフト付きシュレーディンガー半群の離散近似の研究成果であるが, ファインマン-カッツ汎関数積分の有限次元和分近似を考えると言うことにも相当し, 今後, 離散幾何解析的視点からの量子場の解析, 確率数値解析, 更には多様体学習への波及も期待できる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi