2022 Fiscal Year Research-status Report
Research of higher order Painleve systems and rigid systems from a viewpoint of representation theory
Project/Area Number |
20K03645
|
Research Institution | Kindai University |
Principal Investigator |
鈴木 貴雄 近畿大学, 理工学部, 准教授 (60527208)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | パンルヴェ方程式 / 超幾何関数 / 離散可積分系 / ワイル群 / ガルニエ系 |
Outline of Annual Research Achievements |
本年度は主に次の二つの成果を得た. (a) 昨年度の研究では,ハイネのq-超幾何級数への拡大アフィン・ワイル群の作用を級数のベクトルへの行列の左作用として与え,それを用いてq-ガルニエ系の異なる複数の時間発展における特殊解を系統的に与えた.本年度はこの結果を論文にまとめ,Lett. Math. Phys.誌に投稿し掲載された.また,2023年3月の日本数学会などで研究発表を行った. (b) q-ガルニエ系は上にも述べたように異なる複数の時間発展からなる偏差分方程式系であり,その連続極限からはガルニエ系とFST系と呼ばれる異なる2種類の微分方程式系が得られる.そのうちFST系については,研究代表者や津田による先行研究において無限次元可積分系の簡約として定式化され,アフィン・ワイル群対称性やトマエの一般超幾何関数による特殊解を持つことが明らかにされていたが,これまでに得られた結果は不完全なものであり明らかにされていない性質が残っている可能性が様々な状況証拠から示唆されていた.本年度の研究では,q-ガルニエ系の由来となる拡大アフィン・ワイル群の双有理表現に連続極限を施すことで,FST系の新たな対称性を導出することに成功した.この結果は竹縄らによって調べられているFST系の初期値空間の研究において重要な役割を果たすことが十分に期待できる. (b)の成果については,指導院生との共同研究として発表予定である.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
当初の研究目的には無かったが,長年の懸念事項であったFST系の対称性の問題に大きな進展があった.これは,対面での研究集会や研究協力者とのディスカッションが行われるようになったことも大きかった.
|
Strategy for Future Research Activity |
まずは本年度に得られた結果を論文として発表したい.また,次年度は既に国際会議で2件,国内会議で1件の講演が決まっているので,その機会を活かして参加者とのディスカッションを積極的に行っていきたい. 具体的な研究内容としては,まず本年度に得られたFST系の新たな対称性を基に,FST系の初期値空間についての研究を進めていきたい.また,本年度に得られた結果はq-ガルニエ系のただ1つの時間発展についての連続極限であり,他の時間発展についての連続極限を系統的に調べることも重要な課題である.更に,これまでに得られた結果の多重ゼータ値研究への応用の可能性も探っていきたい.
|
Causes of Carryover |
本年度はPCを購入し国内外の研究集会にも積極的に参加したが,前年度までにほとんど予算が使えなかった影響が長引いており,そのため次年度使用額が生じた. 次年度は海外出張の予定も既に決まっており,本年度以上に積極的に出張を行っていきたい.
|
Research Products
(4 results)