2022 Fiscal Year Research-status Report
スペクトル型を軸としたパンルヴェ型方程式の包括的理論
Project/Area Number |
20K03705
|
Research Institution | The University of Tokyo |
Principal Investigator |
川上 拓志 東京大学, 大学院数理科学研究科, 協力研究員 (00646854)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Keywords | パンルヴェ型方程式 / パンルヴェ方程式 / 可積分系 / モノドロミー保存変形 / 複素領域の函数方程式 |
Outline of Annual Research Achievements |
本研究課題では,90年代以降活発に研究されているパンルヴェ方程式の一般化,すなわち高次元化,多変数化,離散化などを統一的に理解するための理論の構築を目指し,主に(高次元の)パンルヴェ型差分方程式系・パンルヴェ型q-差分方程式系を対象として研究している. 本年度は,2020年にJ. Phys. Aに掲載された論文で得たq-行列第六パンルヴェ方程式,及びそれに付随する線型q-差分方程式の退化を計算し,非線型q-差分方程式系とそれに付随する線型問題を得た.その非線型方程式系が行列第五パンルヴェ方程式を連続極限に持つことがわかった.また,フックス型でない線型q-差分方程式のスペクトル型を定義し,退化で得られた線型q-差分方程式をスペクトル型により特徴づけた.これらの結果を論文にまとめ,投稿した. 4次元の場合,パンルヴェ型方程式の退化図式は(離散系を考慮に入れると)Garnier系列と行列パンルヴェ系列の2系列に分かれる.q-行列第六パンルヴェ方程式の退化を調べることは高次元のパンルヴェ型方程式の様相を知るための重要な手がかりとなることが期待される.
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
非可換q-差分パンルヴェ型方程式の退化が進むと連続極限などの計算が簡単になることを期待したが,思っていたより簡単にはならなかった.ある程度計算は進んだが,前年度までの遅れを取り戻すには至らなかった.
|
Strategy for Future Research Activity |
引き続き非可換q-差分パンルヴェ型方程式の退化,及びそれらの連続極限を調べ,微分方程式とq-差分方程式のスペクトル型の対応について検討する.
|
Causes of Carryover |
出張の予定がなくなったため.次年度に旅費あるいは書籍代などとして使用する.
|