• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Optimization of entanglement structure in many-body problems and its applications

Research Project

  • PDF
Project/Area Number 20K03766
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
Research InstitutionKyoto University

Principal Investigator

Harada Kenji  京都大学, 情報学研究科, 助教 (80303882)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsテンソルネットワーク / ネットワーク構造最適化 / 基底状態計算 / 量子生成モデル / エンタングルメント構造
Outline of Final Research Achievements

The tensor network method efficiently represents correlations between elements in a many-body problem using a network structure that represents a tensor contraction. However, the network structure is typically chosen as a hypothesis and is not dynamically optimized. We have developed a method to automatically optimize the network structure of tensor networks for many-body problems such as ground-state calculations and quantum generative models. We have confirmed the usefulness of this method.

Free Research Field

計算物理学

Academic Significance and Societal Importance of the Research Achievements

量子多体系に関連した基底状態計算や量子生成モデルは、量子科学の先端的話題として研究が進められている.我々の提案したテンソルネットワークのネットワーク構造の自動最適化は従来法と異なり柔軟に問題に応じた構造を見つけることができ、基礎・応用どちらにも展開可能な新しい方法論を提供する.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi