2022 Fiscal Year Research-status Report
Bulk-edge correspondence and its application in non-Hermitian topological phases
Project/Area Number |
20K03788
|
Research Institution | The University of Tokyo |
Principal Investigator |
井村 健一郎 東京大学, 生産技術研究所, 特任研究員 (90391870)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Keywords | 非エルミート量子系 / 羽田野-ネルソン模型 / 量子もつれのダイナミクス / エンタングルメント・エントロピー / 共形場理論 |
Outline of Annual Research Achievements |
非エルミート量子系における波束と量子もつれのダイナミクスを調べた。(自由粒子の)エルミート量子力学では、空間的に局在した波束は時間と共に拡がり、量子干渉効果により、量子系特有の拡散を示す。一方、典型的な非エルミート系である羽田野-ネルソン模型(非対称ホッピング型非エルミート系)では、波束を時間発展させても、このような「量子的拡散」は起こらず、ホッピングの非対称性を反映してほぼ形を変えないまま波束の中心が一方向にシフトする。厳密に言えば、波束は長い時間スケールで緩やかに拡散するが、この拡散はガウス的な古典的である。ランダムな不純物ポテンシャルを印加すると、エルミート系における量子的な拡散に似た振る舞いが復活し、その増加と共に波束は拡がるようになるが、これはエルミート系において波束が単調に局在傾向に向かうのとほぼ真逆の傾向と言える。多体効果を取り入れた量子もつれのダイナミクスでも、このような非エルミート系特有の波束のダイナミクスの影響が見てとれる。一方、量子もつれのダイナミクスでは、非エルミート系のスペクトルが複素である(周期境界条件を仮定)ことに起因して、多くの固有状態の重ね合わせで作られた初期波束が時間発展と共に最大の虚部を持つ1つの固有状態に収斂されていく効果が重要になる(*1)。本研究では、非エルミート系における量子もつれのダイナミクスにおいて、波束の拡がる効果と重ね合わせの抑制効果が競合し、エンタングルメント・エントロピーが時間的に非単調なふるまいをすることを明らかにした。 *1)このように長時間経過して系がある種の平衡に近づく漸近的な時間領域では、エンタングルメント・エントロピーが、フェルミ縮退した基底状態からのボゾン的な粒子-正孔励起の場合(*2)と同じ対数的なサイズ依存性を示すことを見い出した。 *2)c=1共形場理論で記述される。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
トポロジカル絶縁体の非エルミート版をきちんと定式化するという元々の計画から派生して、羽田野-ネルソン型の非エルミート系で局在-非局在転移をトポロジカルな相転移として記述する構想(*1)、そこからさらに発展して今回の量子もつれのダイナミクスの研究へと繋がった。そのような意味で、研究内容は当初の計画と少し逸れたが、発展的な方向に展開していると考えている。 *1)これには非エルミート系特有の点ギャップという複素スペクトルの構造(*2)が関連している。今回の量子もつれのダイナミクスの研究でもこの非エルミート系特有の複素スペクトルの構造が鍵を握っていた。 *2)羽田野-ネルソン模型は点ギャップ型非エルミート系のプロトタイプである。
|
Strategy for Future Research Activity |
量子もつれのダイナミクスの研究では、長時間経過した後の漸近的時間領域でエンタングルメント・エントロピーが、c=1共形場理論の予測と一致する対数的なサイズ依存性を示すことを見た(相互作用のない場合)。相互作用のある系の場合、対数的なサイズ依存性は変わらず、その係数を決める中心電荷cが実効的に繰り込まれるような振る舞いも見られた。今後はより広いパラメーター領域で、このような漸近的時間領域におけるエンタングルメント・エントロピーのサイズ依存性を調べ、早急に論文にまとめたい。
|
Causes of Carryover |
コロナ禍で予定していた海外出張を部分的にキャンセルせざるを得なかった。次年度は海外渡航もかなりしやすくなると思われるので積極的に海外の研究集会に参加し、本研究の研究成果を国内外の研究者に周知し、本研究の国際的な認知度向上に努めると共に、今後の研究のためのフィードバックも得たい。
|