• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Fabrication of tunnel junction devices using antiferromagnetic materials for the realization of ultra-high-density memories

Research Project

  • PDF
Project/Area Number 20K04569
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21050:Electric and electronic materials-related
Research InstitutionNational Institute for Materials Science

Principal Investigator

WEN Zhenchao  国立研究開発法人物質・材料研究機構, 磁性・スピントロニクス材料研究拠点, 主任研究員 (40784773)

Project Period (FY) 2020-04-01 – 2023-03-31
KeywordsTunnel junctions / Antiferromagnetic
Outline of Final Research Achievements

The development of antiferromagnetic material-based tunnel junction devices is of particular importance for scaling down bit sizes for ultrahigh-density non-volatile memories. This research focuses on developing antiferromagnetic materials/heterostructures for tunnel junctions and elucidating their magnetoresistance effects. Two cases are explored: antiferromagnetic FeRh and 111-textured noncolinear antiferromagnetic Mn75Ir25. Relatively high tunneling magnetoresistance ratios are achieved with an unusual bias dependence in FeRh-based tunnel junctions, where the interface Fe-rich termination layers and interface resonance tunneling play important roles. The Mn75Ir25-based tunnel junctions show room-temperature tunneling anisotropic magnetoresistance. Epitaxial growth of antiferromagnetic Mn75Ir25 and RuO2 films is also achieved. The findings provide valuable insights into the realization of ultrahigh-density memory devices and spintronic applications using antiferromagnetic materials.

Free Research Field

スピントロニクス

Academic Significance and Societal Importance of the Research Achievements

トンネル接合素子に向けて、様々な反強磁性材料を研究し、磁気抵抗輸送に関連する多岐にわたる結果を得た。これにより物理学の理解が深まり、高密度なメモリデバイスの実現が潜在的に可能となる。特に、反強磁性体界面における現象である界面軌道共鳴トンネルやトンネル異方性磁気抵抗などに着目し、高いトンネル磁気抵抗やトンネル異方性磁気抵抗を実現した。これらの研究成果は、スピントロニクス分野に限らず、材料科学や物理学など幅広い分野に影響を与え、学術的な価値が高い。また、これらの成果は、低消費電力動作や高速・大容量情報処理を実現するためのスピントロニクスデバイスの基盤技術として、社会的にも重要な意義を持っている。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi