2023 Fiscal Year Final Research Report
Construction of a scientific system for disaster prevention of heavy rain and heavy snow using a small vertical radar network
Project/Area Number |
20K05037
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 25030:Disaster prevention engineering-related
|
Research Institution | National Institute of Technology, Toyama College |
Principal Investigator |
SHIINA Toru 富山高等専門学校, その他部局等, 教授 (80196344)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 鉛直レーダ / 豪雨・豪雪 / 防災科学 |
Outline of Final Research Achievements |
Three small vertical Doppler radars were deployed at fixed distance intervals to measure precipitation phenomena in three-dimensional space. In addition, the shape, water content, and velocity of rain and snow particles falling on the ground were measured by two disdrometers. A method was developed to estimate the backscattering cross section of rain and snow particles between the backscattering cross section by radar and the particle size and fall velocity distributions using a disdrometer. We attempted to classify precipitation types using sufficient statistics of the size and fall velocity distributions obtained by an optical disdrometer. Furthermore, a convolutional neural network model system was constructed to classify precipitation types using radar reflection spectra of a small Doppler radar.
|
Free Research Field |
防災科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究手法により、光学式ディスドロメータにて得られた粒径-落下速度分布ならびにドップラーレーダのレーダ反射スペクトルから降水種判別を行うことが可能である。更に、得られた降水種ごとに、ドップラースペクトルから降雪粒子の粒径-落下速度分布を推定することにより、降水種の密度を考慮した高精度な降雨・降雪強度推定への適用が期待される。
|