• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Quantitative evaluation and prediction technology development for occurrence conditions of vehicles-stranding during heavy snowfall

Research Project

  • PDF
Project/Area Number 20K05043
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 25030:Disaster prevention engineering-related
Research InstitutionUniversity of Fukui

Principal Investigator

FUJIMOTO Akihiro  福井大学, 学術研究院工学系部門, 准教授 (90456434)

Co-Investigator(Kenkyū-buntansha) 河島 克久  新潟大学, 災害・復興科学研究所, 教授 (40377205)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsスタック / 大雪 / 車両滞留 / 路面雪氷状態予測 / 冬期道路管理 / 立ち往生
Outline of Final Research Achievements

We conducted vehicle tests on compacted-snow roads to elucidate the mechanism whereby vehicles become stranded on roads in this study. The vehicle-stranding risk prediction model was developed by reflecting this knowledge in the road surface snow and ice condition model. Database of vehicle-stranded events due to snow updated from investigation of vehicle-stranded in winter 2020/2021. We investigated the conditions of the compacted-snow road surface under a standing vehicle during heavy snowfall that occurred in Fukui in January 2021.

Free Research Field

雪工学、地盤工学

Academic Significance and Societal Importance of the Research Achievements

実際の立ち往生の踏査や実車試験によるスタック発生メカニズムの解明は、スタックを発生させないためにより有効な対策の検討や実施を可能にさせる。また、スタックする圧雪状態を明らかにしており、これは冬期道路管理においてスタックや立ち往生の発生の回避を除雪で対応可能か、あるいは通行止めを実施するべきかの判断材料になる。スタック危険率予測モデルは世界的にも他になく学術性が高い。また、冬期道路管理に導入し、事前にスタック発生の危険性を把握することは、通行止めの期間の短縮や安全な交通確保につながるなど社会的意義が高い。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi