2022 Fiscal Year Final Research Report
Extraction of feedstock factors affecting catalytic cracking of polycyclic aromatic hydrocarbons and development of a reaction prediction model
Project/Area Number |
20K05207
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Shinshu University |
Principal Investigator |
Shimada Iori 信州大学, 学術研究院繊維学系, 講師 (40708187)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 石油精製 / 接触分解 / 機械学習 / 特徴量エンジニアリング |
Outline of Final Research Achievements |
In the residue fluid catalytic cracking (RFCC) process, polycyclic aromatic hydrocarbons are decomposed by interaction with coexisting components and converted to high-value monocyclic aromatic hydrocarbons. However, the feedstock composition of the RFCC process is extremely complex, and it is difficult to construct a reaction model that takes into account the reactivity of individual components. Therefore, in this study, we investigated the combination of linear regression and physics-based feature engineering to construct a machine learning model that predicts the product composition from the feedstock composition and reaction conditions. LASSO model with physics-based feature engineering achieved higher prediction accuracy than black-box nonlinear regression models, and also showed the possibility of extracting important reaction factors by analyzing the constructed model.
|
Free Research Field |
反応工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、複雑な成分組成を持つ原料の触媒反応を対象として、原料組成と反応条件から生成物組成を予測する機械学習モデルを構築した。さらに、構築したモデルの解析から重要な反応因子を抽出できる可能性を示した。これらの成果は重質油の接触分解反応に限らず、例えばバイオマス資源や廃プラスチック油などの極めて複雑な組成を持つ原料の反応予測にも適用することができる。重要な反応因子を抽出することで、反応条件の最適化や優れた触媒設計につながる知見を得ることができ、低炭素社会や循環型社会の構築に貢献する優れたプロセスの開発につながることが期待できる。
|