2023 Fiscal Year Final Research Report
Optimal control simulation of ultrafast coherent dynamics of ferroic systems
Project/Area Number |
20K05414
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 量子最適制御 / 量子制御 / デコヒーレンス / 量子計算 / レーザーパルス |
Outline of Final Research Achievements |
By extending the optimal control theory, we have developed the algorithms that explicitly specify the pulse-energy constraints and deal with the time variable intermediate targets. We have applied the newly developed optimal control simulation to the spin dynamics, which is described by the Markovian master equation, to systematically examine the decoherence effects. The important roles of the purity have been clarified with the help of the purity trajectory maps. We have modelled the interaction mode of the optical phonons with the molecular vibration and discussed the quantum control mechanisms with nonresonant laser pulses by using the optimal control simulation. We have found the nontrivial control scheme for solely adjusting the relative phases while avoiding the population redistribution.
|
Free Research Field |
理論化学
|
Academic Significance and Societal Importance of the Research Achievements |
量子最適制御法はスピン系の制御を含む量子技術の開発に重要なシミュレーションツールであり,パルスエネルギー拘束条件や可変な中間時刻目的を扱えるようにアルゴリズムを拡張・開発できた意義は大きい。本手法は任意の量子系に適用可能であることから,基礎研究のみならず実用に向けた指針としても活用できる。デコヒーレンスの影響に関しては,純粋度トラジェクトリで表す新しい視点を提供した。量子系の制御にはしばしばレーザーパルスが用いられが,。非共鳴レーザーパルスが共鳴パルスと同様に量子制御に有効であることを示すことで,今後の応用展開において光源選択の幅を大きく広げられたと考えている。
|