• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Novel algorithm for connecting electronic nose values and descriptive words for smells

Research Project

  • PDF
Project/Area Number 20K05900
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 38050:Food sciences-related
Research InstitutionNational Agriculture and Food Research Organization

Principal Investigator

FUJIOKA Kouki  国立研究開発法人農業・食品産業技術総合研究機構, 農業情報研究センター, ユニット長 (90392381)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords嗅覚センサー / 食品
Outline of Final Research Achievements

The aim of this study is to build a system for objectively quantifying food odour using olfactory sensors. In particular, this study focused on comparative analysis of electronic nose values and sensory evaluation scores. The results of the tests on coffee in allowed the identification of some of the components suggested to influence the flavour, but due to the influence of moisture and other factors, it was not possible to predict the sensory evaluation values from the sensor values in this study. On the other hand, from the results of the analysis of cheese evaluation tests, it was observed that there were significant correlations between sensor values and sensory evaluation scores in several categories, although the number of samples was small, suggesting that for some sensory evaluation values, sensor values may be useful for prediction. In the future, these results would be useful to improve the measurement method and the prediction algorithm.

Free Research Field

嗅覚センサーの応用

Academic Significance and Societal Importance of the Research Achievements

現在、食品等の香りの評価は、人の嗅覚を利用した評価が多く行われている。しかしながら、嗅覚は体調に依存することや、嗅覚疲労を起こすために一日で評価できるサンプル数が限られることなどの課題がある。本研究では、嗅覚センサーの利用によって、香りに関する一部の官能評価値がセンサー値から予測できる可能性があることを示唆しており、また、一部の評価値については、閾値等を考慮する必要があることも示唆している。今後の官能評価のサポートを目的とした嗅覚センサーの応用研究に貢献するものである。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi