• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of a fully automated online simultaneous analysis method of steroid hormones and its application to metabolomics

Research Project

  • PDF
Project/Area Number 20K07007
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 47020:Pharmaceutical analytical chemistry and physicochemistry-related
Research InstitutionShujitsu University

Principal Investigator

Kataoka Hiroyuki  就実大学, 薬学部, 教授 (80127555)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsステロイドホルモン / 硫酸化ステロイド代謝物 / バイオマーカー / 固相マイクロ抽出法 / LC-MS/MS分析 / オンライン自動分析 / 唾液 / ストレス評価
Outline of Final Research Achievements

Automated analytical methods for nine steroid hormones and four sulfated steroid metabolites were developed using an in-tube solid-phase microextraction (IT-SPME) method with a capillary column as extraction device for extraction and concentration and an on-line coupled LC-MS/MS method. The conditions of IT-SPME and LC-MS/MS were optimized and validated to establish a selective and sensitive quantitative method for non-invasive analysis using saliva samples. This method was applied to stress response steroid biomarker analysis, and the stress effects of passive smoking and the stress-reducing effects of essential oils and music were analyzed. These steroid biomarker levels showed good correlations with other stress/relaxation biomarker levels and stress assessment by autonomic balance based on heart rate variability.

Free Research Field

医歯薬学

Academic Significance and Societal Importance of the Research Achievements

本研究で開発したIT-SPME/LC-MS/MS分析法は、試料の抽出・濃縮、分離、検出、データ解析までをオンライン自動化した選択的かつ高感度な分析法であり、分析の簡易化、微小化、迅速化、省力化を図った画期的な手法としてステロイドホルモン代謝関連化合物の網羅的解析への応用が期待でき、実用化に繋がる革新的分析技術開発として学術的に意義がある。また、唾液試料を用いる非侵襲的なステロイドバイオマーカー分析やステロイド代謝物プロファイルのデータベースを構築することにより、ステロイド代謝関連疾患の早期診断が可能となり、国民の健康の保持増進や疾病の予防・診断に貢献することが期待され、社会的意義は大きい。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi