2022 Fiscal Year Research-status Report
臓器機能情報を用いた新たなオーダーメイド放射線治療技術の開発
Project/Area Number |
20K08005
|
Research Institution | Komazawa University |
Principal Investigator |
藤田 幸男 駒澤大学, 医療健康科学部, 准教授 (10515985)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 肺機能画像 / CT装置 / 非線形位置合わせ法 / 個別化放射線治療 |
Outline of Annual Research Achievements |
本研究は放射線肺臓炎の発生リスク低下と高い腫瘍制御率を両立した新しい放射線治療技術を開発することを目的としている。そのために研究期間で特別な設備を必要としない2つの肺機能(肺胞換気能と肺血流量)の画像化手法を確立し、2つの肺機能の情報を使用した放射線治療の線量分布最適化手法を開発する。 2022年度は2つの肺機能の情報を使用した放射線治療の線量分布最適化手法の実現性と有効性について検討を進めた。従来の方法では肺胞換気能と肺血流量のどちらか一方のみを考慮した最適化手法が検討されており、両方の機能を考慮した最適化手法の実現性と臨床的な有効性の検討は行われていない。これに対して、肺胞換気能と肺血流量の2つの情報を線量分布最適化へ組み込んだ手法を実現化し、この方法と従来の手法との比較を行った。さらに、放射線肺臓炎の正常組織障害発生確率(normal tissue complication probability; NTCP)モデルを構築し、この手法が放射線肺臓炎の発生リスク低減に有効であるかを検討した。これらの結果、従来の手法と比較し、2つの情報を線量分布最適化へ組み込んだ手法が、放射線肺臓炎の発生リスク低減に有効であることが示された。現在、2021年度に構築した深層学習技術による放射線肺臓炎発生における高リスク領域の特定法の線量分布最適化への応用についての検討を進めている。 2022年度も継続して前年度に得られた肺機能画像のための最適なCT撮像法の有効性を共同研究施設で放射線治療を施行される患者さんに対して実施した。本研究での予定登録数 20名であり、2022年度は被験者2名の登録があった。登録された2名の被験者に対してCT画像の取得を行った。前年度とあわせて15名のデータが取得されている。2023年度も継続して肺機能画像のための最適なCT撮像法の有効性を明らかにする。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
2022年度は肺機能の情報を使用した放射線治療の線量分布最適化手法における基盤技術を開発することを目的としていた。研究実績に示したようにその目的は十分に達成されが、臨床研究データの取得において当初の研究期間での目標登録数を達成することができなかった。これにより、新たに取得したデータを用いた研究計画についての実施に遅れが生じている。そのため、2023年度で目標登録数の達成を目指すと同時に得られているデータでの研究を限られた状況で進める。
|
Strategy for Future Research Activity |
本研究は当初の計画どおりに研究成果を蓄積できているが、やや遅れて推進されている。2023年度で目標登録数の達成を目指すと同時に、取得されているデータから得られた肺機能画像から投与線量と肺機能の変化についての定量評価の結果を取りまとめ、この手法の有効性を明らかにする。さらに、2021年度開発した深層学習による技術を組み合わせた放射線治療の線量分布最適化手法の開発を継続する。
|
Causes of Carryover |
臨床研究で支出予定の20名の被験者に対するCT検査費用を2020および2021年度予算に計上していた。2022年度までの登録は15名であり、残り5名分のCT検査費用の繰越しが発生した。臨床研究は継続しており、5名分の予算は2023年度に使用する。
|