• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of immunotherapies targeting neoantigens against immune checkpoint inhibitor-resistant lung tumors

Research Project

  • PDF
Project/Area Number 20K09161
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 55040:Respiratory surgery-related
Research InstitutionThe University of Tokyo

Principal Investigator

Nagaoka Koji  東京大学, 医学部附属病院, 特任講師 (80649799)

Co-Investigator(Kenkyū-buntansha) 垣見 和宏  東京大学, 医学部附属病院, 特任教授 (80273358)
金関 貴幸  札幌医科大学, 医学部, 講師 (50531266)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsネオアンチゲン / 肺がん / CTL / 免疫チェックポイント阻害剤
Outline of Final Research Achievements

We identified neoantigens and evaluated combinatorial immunotherapy in a mouse model of lung cancer with high T cell infiltration (ASB-XIV) and low T cell infiltration (LLC1). Although we identified neoantigens that induce anti-tumor T cell responses in both models, neoantigen DC vaccines alone were not sufficient to induce significant anti-tumor effects. For ASB-XIV, we induced strong anti-tumor effects by infiltrating a sufficient number of neoantigen-reactive T cells into the tumor through the combination of neoantigen DC vaccination and anti-PD-1 antibody administration. For LLC1, tumor growth was suppressed by combining neoantigen DC vaccination with CpG to infiltrate CD8+ T cells into the tumor and anti-CD38 antibody. Our findings suggest that selecting combination therapy tailored to the individual tumor microenvironment is crucial.

Free Research Field

腫瘍免疫

Academic Significance and Societal Importance of the Research Achievements

腫瘍内微小環境は、患者ごとに異なり、効果的な抗腫瘍免疫応答を誘導するためには、個々の腫瘍内の状態を正確に把握して、最適な組み合わせの複合的免疫治療を行う必要がある。本研究の意義は、2種類の肺がんマウスモデルに対して、それぞれに適切な複合的免疫治療を明らかにし、がん免疫治療の個別化、複合化の重要性を示した点である。加えて、今後の複合的免疫治療の開発において、本研究で同定したネオアンチゲンに特異的なT細胞をモニタリングすることで、その治療の効果の指標とすることが可能となる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi