2022 Fiscal Year Final Research Report
Improving the accuracy of human motion analysis by machine learning
Project/Area Number |
20K11344
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 59020:Sports sciences-related
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 動作解析 / 骨格情報 / 姿勢推定 / 動作整合 |
Outline of Final Research Achievements |
We have been working on a method for detecting skeletal information from human motion videos and automatically mapping motions based on the skeletal information. In the Dynamic Time Warping (DTW) method for mapping two time-series data, we have shown that DTW improves posture mapping based on skeletal shape and motion start/end point matching compared to the conventional method. It also made it possible to reduce the amount of DTW operations. The skeletal information obtained from human motion video is a two-dimensional projection of a three-dimensional object. Therefore, we studied a method for estimating 3D posture from 2D skeletal information. We showed that the posture estimation results can be improved under the assumption that the skeletal symmetry and the absolute length of the skeleton do not change.
|
Free Research Field |
機械学習
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、機械学習を用いて得られる骨格情報をもとに運動動作の解析に必要な処理の高精度化と高速化について検討を行った。特に、動作パターン認識に加えて、推定骨格情報の位置、角度、同期性、一致度の解析が進んだことに意義があると考えられる。機械学習を用いた骨格情報推定アルゴリズムは、非接触なアプローチであることに大きな利点があり、これらの研究成果はスポーツ運動分析や医療介護などの分野に対して幅広く適用できる。今後、スポーツにおけるスキル向上だけでなく、介護におけるリハビリの幇助技術として、人類の生活品質の向上に貢献できると考えられる。
|