• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of statistical analysis methods for visualizing nonlinear activity of large-scale neural populations

Research Project

  • PDF
Project/Area Number 20K11709
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionKyoto University (2022-2023)
Hokkaido University (2020-2021)

Principal Investigator

SHIMAZAKI HIDEAKI  京都大学, 情報学研究科, 准教授 (50587409)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords神経スパイクデータ / イジングモデル / 状態空間モデル
Outline of Final Research Achievements

We studied the nonequilibrium kinetic Ising model to analyze and visualize large-scale, nonlinear neuronal population activity. We developed a theory that unifies various mean-field approximation methods and proposed a new method that outperforms previous ones in conditions where neurons exhibit diverse patterns. We also conducted theoretical analyses on this model using a path-integral approach to elucidate the behavior of large-scale networks. Furthermore, we extended the nonequilibrium kinetic Ising model within the state-space framework. This model enabled us to estimate fluctuating asymmetric couplings from experimentally obtained spiking time-series data. In conclusion, we successfully developed novel theories and statistical analysis methods for understanding and visualizing large-scale neuronal population activity.

Free Research Field

理論神経科学

Academic Significance and Societal Importance of the Research Achievements

非平衡キネティック・イジングモデルに対する新しい理論と統計解析技術は,神経科学分野における基礎研究だけでなく,機械学習分野にも応用可能である.提案した平均場近似法によって機械学習による大規模データ解析の精度が向上が見込まれる.さらに,提案した平均場近似の統一的枠組みに基づいて,機械学習モデルのトランスフォーマーの解析が海外の研究者によって行われるなど,学習機械の理論的な理解にも一定の貢献がある.また,理論解析により求めた大規模ネットワークの厳密解は他の複雑系の解析にも適用できるため,物理学,生物学,経済学など多岐にわたる分野で観測されるネットワーク現象への応用が期待される.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi