2022 Fiscal Year Final Research Report
A Study on White-Boxing of Malicious Domain Name Detection System Using Machine Learning
Project/Area Number |
20K11800
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | Waseda University |
Principal Investigator |
Uchida Masato 早稲田大学, 理工学術院, 教授 (20419617)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 悪性ドメイン名検知 / 判断根拠説明 |
Outline of Final Research Achievements |
In this study, we aimed to achieve the white-boxing of a malicious domain name detection system using machine learning and examined the necessary elements. First, we investigated the nature of malicious activities related to internet resources involving domain names. Next, we proposed visualization techniques to enhance the interpretability of detected malicious activities. Furthermore, we discussed the integration of identification models, explanation models, and human expertise, which are the main objectives of this research. We also investigated the reliability of identification models and explanation models, which are indispensable for achieving the research goals.
|
Free Research Field |
機械学習の理論と応用
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、機械学習を用いた悪性ドメイン名検知システムのホワイトボックス化を実現する上で必要となる要素について検討した。これにより、検知結果の解釈性や信頼性が向上し、セキュリティアナリストがより正確かつ効果的なリスク分析やインシデント対応を行うための支援が可能になる。また、透明性の高いセキュリティ対策の実現や信頼性の高いシステムの構築にも貢献することが期待される。これらの成果は、悪性ドメイン名検知システムの透明性の向上や信頼できるセキュリティ対策の実現に寄与し、学術的・社会的な意義を持つものといえる。
|