• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study on improving learner's motivation using a feedback loop of biological information

Research Project

  • PDF
Project/Area Number 20K14110
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 09070:Educational technology-related
Research InstitutionNational Institute of Information and Communications Technology

Principal Investigator

Watanabe Hiroki  国立研究開発法人情報通信研究機構, 未来ICT研究所脳情報通信融合研究センター, 研究員 (00849896)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords脳波 / 事象関連電位 / 学習意欲 / 教育工学
Outline of Final Research Achievements

This study aimed to develop an adaptive learning application that motivates students to learn by automatically adjusting goal performance according to individual preferences and characteristics. To this end, we attempted to quantitatively evaluate the degree of motivation to learn from electroencephalograms during learning. In the experiment, EEG was measured during a mental arithmetic task consisting of three difficulty levels (low, medium, and high) for achieving the goal performance score. The results showed that the amplitude of event-related potentials correlated with the subjective evaluation value of the degree of motivation to achieve the goal performance score for each achievement difficulty level. In addition, the amplitude of the event-related potentials while competing with others for a score in a similar task predicted the degree to which the participants were motivated to achieve the goal of winning the competition with others.

Free Research Field

認知科学

Academic Significance and Societal Importance of the Research Achievements

本研究は、学習中の脳波計測が学習に対する意欲度の客観的指標となりうることを示し、これに基づいて学習意欲を喚起するような目標成績の達成難易度の高さや他者と成績スコアを競争するゲーム要素を追加することが学習意欲を喚起するかといった個人の特性・好みの度合いを推定できる可能性を示した。今後、この脳波指標に基づいて個人の特性・好みを客観的に推定し、それらに合わせた目標成績の設定を行うことで学習意欲を喚起する適応的な学習システムの開発につながるという意義がある。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi