• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

クラスター構造を用いた旗多様体のトーリック退化の研究

Research Project

Project/Area Number 20K14281
Research InstitutionKumamoto University

Principal Investigator

藤田 直樹  熊本大学, 大学院先端科学研究部(理), 准教授 (40866357)

Project Period (FY) 2020-04-01 – 2025-03-31
KeywordsNewton-Okounkov 凸体 / クラスター代数 / トーリック退化 / ユニモジュラー同値 / トロピカル変異
Outline of Annual Research Achievements

本研究の目的はクラスター代数の理論を用いて旗多様体のトーリック退化に対する統一的な理解を与え, シンプレクティック幾何学へ応用することである. 今年度の研究では後半の研究の目標である旗多様体のクラスター構造から生じる完全可積分系がトロピカル変異によって移り合うかどうかを解明することはまだできていないが, 旗多様体のクラスター構造から生じる Newton-Okounkov 凸体を階数が小さい場合に分類し次の結果を得た.

旗多様体のクラスター構造から生じる Newton-Okounkov 凸体はシードと呼ばれるデータごとに1つ与えられ, シードを取り換えると対応する Newton-Okounkov 凸体は頂点の個数が変わるなどの異なる組合せ論的性質を持つ. そのためユニモジュラー同値という多面体の組合せ論的性質を保つ同値関係によって, クラスター構造から生じる Newton-Okounkov 凸体たちを分類することは重要な問題である. ユニモジュラー同値な多面体に対応するトーリック多様体は同型であるため, この問題は旗多様体のクラスター構造から生じるトーリック退化の退化先を分類する問題とみなすこともできる.

報告者は Sungkyunkwan University の Yunhyung Cho 氏, 大阪大学の東谷章弘氏, および Chungbuk National University の Eunjeong Lee 氏との共同研究において, 旗多様体の階数が小さい場合にこの問題に取り組んだ. 具体的には階数3のA型旗多様体の場合にクラスター構造から生じる Newton-Okounkov 凸体を分類し, Newton-Okounkov 凸体のユニモジュラー同値類を保つような involution であって, ディンキン図形の involution から誘導されるものとは本質的に異なるものが存在することを見出した. この involution は一般の階数の場合にもクラスター構造から生じる Newton-Okounkov 凸体を分類するための手がかりになると期待できる.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

今年度の研究で得られた旗多様体のクラスター構造から生じる Newton-Okounkov 凸体の階数が小さい場合の分類は, 旗多様体のトーリック退化に対する統一的な理解に繋がるものである. 一方で予定していたケルン大学 (ドイツ) への研究訪問が年度末となったため, 研究計画の見直しが必要となり若干の遅れが生じている.

Strategy for Future Research Activity

次年度は引き続き旗多様体のクラスター構造から生じる完全可積分系がトロピカル変異によって移り合うかどうかを解明する. クラスター代数の理論から定まる超ポテンシャル関数を完全可積分系と比較しながら研究を進める.

並行して旗多様体のクラスター構造から生じるシューベルト多様体の半トーリック退化について, 超ポテンシャル関数との関係を考察し, ストリング多面体に関する前年度の結果の拡張を試みる.

Causes of Carryover

予定していたケルン大学 (ドイツ) への研究訪問が年度末となったため, 研究計画の見直しが必要となり次年度使用額が生じた.
次年度使用額はこの研究訪問によって得られた研究成果の発表などに使用する.

  • Research Products

    (9 results)

All 2024 2023

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results)

  • [Journal Article] Newton-Okounkov polytopes of flag varieties and marked chain-order polytopes2023

    • Author(s)
      Naoki Fujita
    • Journal Title

      Transactions of the American Mathematical Society, Series B

      Volume: 10 Pages: 452~481

    • DOI

      10.1090/btran/142

    • Peer Reviewed / Open Access
  • [Journal Article] Fano and Weak Fano Hessenberg Varieties2023

    • Author(s)
      Hiraku Abe, Naoki Fujita, Haozhi Zeng
    • Journal Title

      Michigan Mathematical Journal

      Volume: 73 Pages: 511~555

    • DOI

      10.1307/mmj/20205971

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Toric and semi-toric degenerations arising from cluster algebras2024

    • Author(s)
      Naoki Fujita
    • Organizer
      Workshop on Torus Actions in Symplectic and Algebraic Geometry
    • Int'l Joint Research / Invited
  • [Presentation] Combinatorics of string polytopes in type C2024

    • Author(s)
      藤田 直樹
    • Organizer
      広島岡山代数学セミナー
    • Invited
  • [Presentation] Combinatorics of string polyropes for symplectic Lie algebras2023

    • Author(s)
      藤田 直樹
    • Organizer
      Algebraic Lie Theory and Representation Theory 2023
  • [Presentation] Combinatorics of skew mitosis operators2023

    • Author(s)
      藤田 直樹
    • Organizer
      変換群の幾何とトポロジー
    • Invited
  • [Presentation] Introduction to canonical bases and crystal bases2023

    • Author(s)
      Naoki Fujita
    • Organizer
      Topology and Geometry of Torus actions and related Combinatorics (TGTC) Summer Seminar 2023 in Osaka
    • Int'l Joint Research / Invited
  • [Presentation] Toric degenerations and Newton-Okounkov bodies arising from cluster algebras2023

    • Author(s)
      Naoki Fujita
    • Organizer
      Summer School on Cluster Algebras 2023
    • Int'l Joint Research / Invited
  • [Presentation] シューベルト・カルキュラスと結晶基底2023

    • Author(s)
      藤田 直樹
    • Organizer
      第49回変換群論シンポジウム
    • Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi