• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Number theory of real quadratic fields from the perspective of non-holomorphic modular forms

Research Project

  • PDF
Project/Area Number 20K14292
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyushu University (2022-2023)
Nagoya University (2020-2021)

Principal Investigator

Matsusaka Toshiki  九州大学, 数理学研究院, 助教 (60868157)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsモックモジュラー形式 / 双曲型アイゼンシュタイン級数 / サイクル積分 / Rademacher記号
Outline of Final Research Achievements

We investigated a mysterious analytic object introduced over 80 years ago, known as the “cycle integrals” of modular forms, using the recent advancements in the theory of mock modular forms. Our perspectives on number theory and topology differ from the original motivation behind the notion of the cycle integrals. As a result, for instance, although the cycle integrals of the number-theoretical object called the elliptic modular j-function remain mysterious, we discovered that considering further cycle integrals of their generating function provides a geometric information, such as the number of intersections of a certain pair of geodesics.

Free Research Field

整数論

Academic Significance and Societal Importance of the Research Achievements

極めて古典的な対象であるにも関わらず,その数論的な役割が謎に包まれていた「サイクル積分」について,その数論的な側面に留まらず,トポロジーの研究との深い繋がりを見出せたことは,意外性もあり,今後の研究に大きな展望を与えるものである.また,モックモジュラー形式という,比較的新しく,また未だ国内に専門家が多くなかった理論を積極的に導入して,その新たな応用を与えたことも,意義が大きいと考える.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi