• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Auslander-Reiten theory for the lattice category of ordes

Research Project

  • PDF
Project/Area Number 20K14302
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionIbaraki University (2021-2023)
Yuge National College of Maritime Technology (2020)

Principal Investigator

Miyamoto Kengo  茨城大学, 理工学研究科(工学野), 助教 (90845801)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords安定AR箙 / Heller格子 / τ傾有限代数 / カードベース暗号 / グラフ自己同型シャッフル / 一様群分解 / q-連分数 / グラフ線形表示
Outline of Final Research Achievements

Mathematical and engineering results are described below. Mathematical results include (1) the structure of (stable) AR quivers of symmetric orders over a complete discrete valued ring (2) the classification of finite dimensional algebras by τ-tilting finite, and (3) others (q-deformed continued fractions, uniform decomposition of finite groups). Engineering results include (4) a proposal and implementation of a shuffling protocol for card-based cryptography and its application to puzzles, and (5) a proposal for a graph linear notation with an application to text search on graphs.

Free Research Field

多元環の表現論, カードベース暗号

Academic Significance and Societal Importance of the Research Achievements

代数の表現論の大きな目標は代数の加群圏の解明にある. これは現代の言葉ではAR箙の構造を決定することや部分圏を分類することとなる. 体上の有限次元代数のAR箙の構造と異なり, 係数環の次元を上げればそれ上の代数のAR箙の構造論はまだまだ未開の分野である. 今回は完備離散付値環の非特異孤立点とは限らないような対称整環の(安定)AR箙の形状に関する制限を与えたものである. 部分圏の分類に関しては, (台)τ傾加群と呼ばれるものが(有限関手)ねじれ部分圏の分類を与え, これが有限となるケースは基本的であるため, 様々な代数のクラスに対してτ傾有限な代数を完全に分類することは重要である.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi