2022 Fiscal Year Research-status Report
Project/Area Number |
20K14339
|
Research Institution | Gunma University |
Principal Investigator |
加藤 睦也 群馬大学, 大学院理工学府, 助教 (40847026)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 多重線形擬微分作用素 / 擬微分作用素 / フーリエ積分作用素 / Wiener アマルガム空間 |
Outline of Annual Research Achievements |
2022年度は下記のような結果は得られたものの,ともに満足のいくところまで到達できなかったため論文としてはまとめていない. 1.Boulkhemairは,線形の擬微分作用素のL2空間上での有界性を示す際,MiyachiやSugimotoなどで用いられたベゾフ空間型のシンボルクラスよりもさらに広いクラスを導入した.昨年度の多重線形擬微分作用素におけるシンボルの滑らかさに関する成果では,そのシンボルクラスを土台としていたため,逆輸入的ではあるものの,その際に用いたWienerアマルガム空間を応用する手法を使って,Boulkhemairの結果を局所ハーディ空間hp上 (0<p≦∞) での有界性へと拡張しようと試みた.しかし,0<p≦2の場合には満足のいく結果が得られたものの,2<p≦∞の場合にはシンボルの滑らかさにε-lossが生まれてしまい,最適なところまで届かなかった. 2.HormanderやDos Santos Ferreira-Staubachなどの結果によって,S_{ρ,ρ}クラスの線形のフーリエ積分作用素がL2空間上で有界となることはよく知られている.ただし,0≦ρ<1を満たす指数である.ごく最近,Castro-Israelsson-Staubachによって,この結果はLp-有界性 (1<p<∞) へと拡張されている.申請者は,この結果をρ=0,すなわち,S_{0,0}クラスの場合にはhp-有界性 (0<p≦∞) へとさらに拡張することはできた.しかし,0<ρ<1の場合のS_{ρ,ρ}クラスに対してはまだ拡張できていない.
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
前年度の終わりまでに,本課題の研究対象としているS_{0,0}型の多重線形擬微分作用素については,満足のいくところまで成果を得られていた.そのため,本年度の初め頃から,これまでの研究の続きとして,HormanderやSeeger-Sogge-Steinなどの結果に代表されるフーリエ積分作用素の有界性について興味を持ち,いくらかの論文を読み始めた.しかし,それらが想像以上に難しいこと,この作用素に関する知識が足りないこと,さらには読むべき(であろう)論文も多いことなどから,なかなか研究は進展していない.そのため,現在の進捗状況はやや遅れているように思う.
|
Strategy for Future Research Activity |
今年度に引き続き,線形および多重線形のフーリエ積分作用素に関する論文を読み進め,今後の研究への足がかりを見つける.そして,些細なことであっても進展することを目指す.
|
Causes of Carryover |
新型コロナウイルス感染症によって,対面での研究集会やセミナーなどの開催が激減したため,申請していた旅費分のかなりの額が余ってしまった.状況次第ではあるが,繰り越した分は次年度の旅費などに充てる予定である.
|
Research Products
(3 results)