• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Smoothing estimates for dissipative evolutions equations and applications to nonlinear problems

Research Project

  • PDF
Project/Area Number 20K14346
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionHiroshima University

Principal Investigator

Wakasugi Yuta  広島大学, 先進理工系科学研究科(工), 准教授 (20771140)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords消散型発展方程式 / 平滑化評価 / 適切性 / 時間大域解 / 一意性 / 漸近挙動 / 解の爆発 / 数値解析
Outline of Final Research Achievements

For damped wave equations describing the wave propagation with friction and resistance effects, the time-space estimates so-called smoothing estimates of the solutions were derived. In particular, we proved the smoothing estimates in the end-point case, and as its application, we showed the unconditional uniqueness for the solution to the nonlinear damped wave equation with energy-critical nonlinearity. Besides, several achievements on the global existence and the estimates of maximal existence time of the solution to the nonlinear damped wave equation on measure spaces and exterior domains, the finite time blow-up of solutions to nonlinear wave equations in curved spacetimes such as the FLRW spacetime, the asymptotic expansion of solutions to linear damped wave equations, and the asymptotic behavior of solutions to nonlinear beam equations, the numerical analysis for nonlinear wave equations with dynamical boundary conditions were obtained.

Free Research Field

解析学

Academic Significance and Societal Importance of the Research Achievements

消散型波動方程式は、摩擦や抵抗などの効果を考慮した波の伝播を記述する偏微分方程式であり、伝送線路理論の基礎方程式や、宇宙論に現れる曲がった時空の中での光の伝わり方を記述するのに用いられる。このような物理現象の数理モデルとして現れる偏微分方程式について、解の存在・一意性・漸近挙動などの基本的な性質を数学的に調べることは、微分方程式の理論としてだけでなく、例えば数値シミュレーションの正当性を理論的に保証するなど、応用的な観点からも重要である。本研究では、上記の数理モデルに対する理論的研究および、コンピュータによるシミュレーションを含む数値解析的研究を実施した。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi