• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of consistent variable selection criteria with high-dimensional response and explanatory variables using forward-backward stepwise selection method

Research Project

  • PDF
Project/Area Number 20K14363
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionHiroshima University

Principal Investigator

Oda Ryoya  広島大学, 先進理工系科学研究科(理), 助教 (10853682)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords多変量モデル / モデル選択 / 一致性 / 高次元
Outline of Final Research Achievements

The aim of this study is to propose a variable selection criterion with good properties for high-dimensional and large-sample data in multivariate models, including cases where the number of dimensions of the variables exceeds the sample size. In particular, we propose a criterion with consistency, which is the property that the probability of selecting the true variable is asymptotically one under a high-dimensional setting where the number of variables may exceed the sample size. In order to achieve the aim, we evaluate the consistency in multivariate models under the high-dimensional asymptotic theory, in which the sample size is infinite but the number of variables may be infinite, and propose a variable selection method with consistency.

Free Research Field

数理統計

Academic Significance and Societal Importance of the Research Achievements

近年では高次元データの使用は頻繁にされるため, そのような高次元データに対する統計分析手法の開発は重要である. 本研究により提案された変数選択手法は高次元データに対しても良い性質をもちかつ計算も高速であるため, リーズナブルな手法であると考えられる.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi