2022 Fiscal Year Final Research Report
Molecular dynamics study of non-equilibrium materials based on first-principles calculation and machine learning
Project/Area Number |
20K14378
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
|
Research Institution | Okayama University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 分子動力学法 / 第一原理計算 / 機械学習原子間相互作用ポテンシャル / 塑性変形 / 表面・界面構造 |
Outline of Final Research Achievements |
We investigated non-equilibrium phenomena in various materials based on molecular dynamics simulations. The following results were obtained in the research period: (1) An advanced method using machine learning was successfully applied for the first time to simulate the deformation of silica under shock wave compression. (2) The atomistic mechanism of pressure-induced structural changes in silicate minerals, which are closely related to the dynamics of the Earth's deep interior, was clarified. (3) The atomistic structure of surface-treated calcium carbonate, a functional material with industrial applications in various fields, was predicted. (4) The origin of the excellent ductility of silver sulfide, which is a semiconductor with metal-like ductility, was clarified.
|
Free Research Field |
計算材料物理学
|
Academic Significance and Societal Importance of the Research Achievements |
成果(1)により,非平衡性の強い現象に機械学習を用いた手法を適用可能であることが示されたことから,計算機シミュレーションによる材料科学研究の加速が期待される.成果(2)で得られた知見は,今後の地球深部のダイナミクスの研究の深化に寄与するものである.成果(3)は表面処理炭酸カルシウムを用いた様々な工業製品の高品質化に寄与する,将来の高度な研究の実現に繋がるものである.成果(4)はフレキシブルな半導体を用いた次世代エレクトロニクスに向けた高性能半導体材料開発の足がかりとなるものである.
|