2023 Fiscal Year Final Research Report
Development of 4D hydrodynamic stress field measurement system for specification of stress concentration in cerebral aneurysm
Project/Area Number |
20K14646
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | Nagoya Institute of Technology (2022-2023) Tokyo University of Agriculture and Technology (2020-2021) |
Principal Investigator |
Muto Masakazu 名古屋工業大学, 工学(系)研究科(研究院), 助教 (30840615)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 血行力学 / 流体計測 / 圧力計測 / 可視化技術 / 偏光計測 / 複屈折 / 高速度光弾性法 / 画像再構成 |
Outline of Final Research Achievements |
In the present study, high-speed photoelasticity, an optical measurement method for two-dimensional unsteady hydrodynamic stress fields, was applied to the experimental detection of three-dimensional stress concentrations inside a cerebral aneurysm fluctuating unsteadily due to the pulsating flow. As a result, we succeeded in constructing a “4D (3 dimension + time) hydrodynamic stress field measurement system” that enables unsteady measurement of the three-dimensional stress field of simulated blood flowing in a circular tube. This method combining a high-speed polarization camera and an index-matching method enables the visualization of a two-dimensional stress vector field in an arbitrary cross-section of a circular tube by applying an image reconstruction method to the measured data.
|
Free Research Field |
流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
流体応力場を実験的に非定常・非接触計測できる本計測手法の開発は,流速場計測を基盤に発展してきた流体力学分野に対して学術的および社会的に意義がある.本計測手法は,新たな流体計測技術として活用できるだけでなく,流体応力場計測データを基盤とした流体力学の学問を進展させるポテンシャルを秘めている.例えば,血行力学分野に限定した具体例として,くも膜下出血の原因となる脳動脈瘤の破裂機構の解明や,血液(非ニュートン流体)の応力構成方程式の開発などに貢献する.
|