2022 Fiscal Year Final Research Report
Degradation mechanism of solid oxide cell electrodes during reversible operation between fuel cell and electrolysis cell modes
Project/Area Number |
20K14663
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | The University of Tokyo (2021-2022) Tokyo University of Agriculture and Technology (2020) |
Principal Investigator |
Shimura Takaaki 東京大学, 生産技術研究所, 特任助教 (70814143)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 固体酸化物形燃料電池 / 固体酸化物形電解セル / 三次元微細構造 / 格子ボルツマン法 / 同位体交換 |
Outline of Final Research Achievements |
Solid oxide cells (SOCs) are promising energy conversion devices owing to their high efficiency, which can be operated for electricity generation as fuel cell and fuel production as electrolysis cell modes. For practical use, high durability and enhancement in electrode performance are further required, which should be designed based on the precise understanding of electrode reaction mechanisms in the actual electrode microstructure. In this study, the actual reaction mechanism of the air electrode is investigated through oxygen isotope labeling during the power generation and the numerical simulation of oxygen isotope transport under the operating condition.
|
Free Research Field |
熱工学
|
Academic Significance and Societal Importance of the Research Achievements |
これまでの三次元電極構造解析と電極反応シミュレーションでは,局所の実際の電極反応に関しては検証ができなかった.一方,同位体交換を用いた実験においても,同位体の取り込み,輸送は電極反応だけではなく同位体の濃度勾配により進行するため,実験によって得られた同位体分布と実際の反応場を直接結びつけて議論することは困難であった.本研究で,実際の多孔質電極構造における同位体交換実験と数値計算を併用することで,これまでは議論できなかった局所の電極反応メカニズムの解明に貢献する手法を確率することができた.電極反応メカニズムの解明が促進され,高性能な電極設計の指針を得ることに役立つと期待される.
|