2023 Fiscal Year Final Research Report
Development of 3D Inverse Scattering Analysis with No Prior Information on Incident Field
Project/Area Number |
20K14757
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Fukuoka University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 電磁波工学 / シミュレーション / 非破壊検査 |
Outline of Final Research Achievements |
Solving the inverse scattering problem of determining the position, shape, and electrical parameter distributions of a target object requires information not only on the scattered waves but also on the incident waves. A method to estimate the incident field from the electromagnetic field measured on the observation circle has been proposed. The incident wave to an object is a composite of the electromagnetic wave to probe the object and the unwanted electromagnetic wave from mobile phones and other sources. In this research, we applied proposed method to the extraction of incident wave from the electromagnetic field measured on the observation circle in the presence of unwanted electromagnetic waves, and also proposed a method to extract incident wave from electric field alone. We also leveraged frequency domain analysis and FFT techniques to create the scattered wave from a layered medium. This approach allows for significant time savings in computation compared to FDTD method.
|
Free Research Field |
ものづくり技術(機械・電気電子・化学工学)・計測工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,これまで報告されていなかった不要電磁波が混入した場合の検討,電界データのみで入射波抽出する方法について新たに提案した.査読付き論文として発表できたことから,本研究の意義があったと考えられる. また,層状媒質の比誘電率分布の推定,媒質内の空隙の推定などで機械学習を利用する場合,大量の学習データが必要となる.本研究の高速化手法は,大量の学習データの効率的な作成に大きく貢献できる.
|