2022 Fiscal Year Final Research Report
Development of high-accurate first-principle calculation methods for surface science and the application to material science: Building the foundation for the data-driven surface science
Project/Area Number |
20K15177
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 29020:Thin film/surface and interfacial physical properties-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Tada Kohei 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 主任研究員 (70805621)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | ジラジカル分子 / 密度汎関数理論 / スピン混入誤差 / ジラジカル性 / 分子-表面相互作用 / 不均一系触媒 / 新奇二次電池材料 / 分子デバイス |
Outline of Final Research Achievements |
The aim of this research project is to establish a theoretical basis for investigating the diradical state, which is a feature electronic state of open-shell molecules, in surface-adsorbed structures in order to elucidate how the electronic state and stack structure of the functional open-shell molecules are affected by the interaction with surfaces, leading to data- and computation-driven studies of novel molecular devices. In the first year (2020), I established a method for correcting errors in theoretical calculations of diradical states and a method for analysing diradical character which is known as a feature value of diradical state. In the following years (2021, and 2022), the developped methods were applied to various material systems, and the results and discussions were published as the papers. Specifically, review articles on the developed methods were written, and the application results, mainly to catalyst and battery materials, were published.
|
Free Research Field |
物理化学
|
Academic Significance and Societal Importance of the Research Achievements |
ジラジカル状態の解析は、機能性開殻分子の物性や化学反応性を理解する上で重要であり、その特徴量であるジラジカル性は、開殻分子の機能解明や設計において重要なファクターである。近年、機能性開殻分子を表面に固定化し、分子デバイスの創生がチャレンジされているが、表面相互作用がジラジカル状態に与える影響については、未だ不明な点が多い。分子デバイスは、分子一つ一つがデバイスとしての機能を発現する究極の微小化デバイスであり、SDGsの達成のために世界各国で研究が行われている。本申請課題で達成した、積層分子のジラジカル状態に対する高精度計算・高度解析技術は、この分子デバイス開発を大きく加速させうるものである。
|