2021 Fiscal Year Final Research Report
Development of efficient and accurate electronic structure theory and its application to enzymatic reactions mediated by metalloprotein
Project/Area Number |
20K15228
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 32010:Fundamental physical chemistry-related
|
Research Institution | Nagoya University |
Principal Investigator |
Saitow Masaaki 名古屋大学, 物質科学国際研究センター(WPI), 助教 (40832556)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Keywords | 電子相関 / 波動関数理論 / 結合クラスター理論 / 多参照摂動理論 / 分子分光法 / 溶媒和効果 / メスバウアー効果 |
Outline of Final Research Achievements |
Towards performing a highly-accurate wave function computations on large, real-life systems involving the strong-electron correlation such as the model compounds of [NiFe] hydrogenase, we have obtained the following results: (1) Mössbauer spectroscopy gives a chemical insight on the environment surrounding transition metals such as 57Fe and has been extensively used in the bio-inorganic chemistry. To accurately compute the Mössbauer parameters, we have developed a new computational scheme on the basis of the DLPNO-CCSD linear response approach. (2) For accurately compute the electronic wave function of the solute surrounded by the solvents or the protein environment, we developed a new electronic structure theory called PCM-DMRG-CASPT2. (3) To accurately model the electronic structure of large, multireference systems, we developed a new reduced-scaling multireference perturbation theory (LVMO-PNO-CASPT2).
|
Free Research Field |
量子化学
|
Academic Significance and Societal Importance of the Research Achievements |
[NiFe]ヒドロゲナーゼはプロトンからH2を可逆的に生成するタンパクである。工業的なH2生成とは異なり、ヒドロゲナーゼ触媒機構は、多くの生体高分子がそうであるように、非常に温和な条件で動作する。それ故、その分子機構の解明には学術的のみならず工学的にも価値がある。しかしながら、ヒドロゲナーゼは「強い量子揺らぎ」を内包する大規模複雑系であるがために、その電子状態計算は、密度汎関数法をはじめとした既存の理論手法では困難である。本研究で得られる新規な理論手法はヒドロゲナーゼのみならず、種々の金属タンパクの電子状態のかつてない高精度計算を可能とし、新規な学理構築の第一歩になると考える。
|