2023 Fiscal Year Final Research Report
Derivation of Optimal Cropping System for Dairy Farming: Constructing a Yield Map Using Machine Learning
Project/Area Number |
20K15607
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 41010:Agricultural and food economics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Sato Takeshi 東京大学, 大学院農学生命科学研究科(農学部), 准教授 (30756599)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 機械学習 / ハイパースペクトル / GIS / 計量経済分析 / 酪農 / 牧草地 |
Outline of Final Research Achievements |
With the cooperation of a local agricultural support organization, a professional staff member acquired accurate vegetation survey data of the pasture, and detailed spectral reflectance characteristics of each grass species and season were captured using a hyperspectral camera. The results of machine learning analysis on the collected data indicated that the vegetation survey could achieve high classification accuracy of up to 97% in certain vegetation conditions. Furthermore, a simulation of machine work efficiency optimization demonstrated the potential for reducing work time by approximately 20%, and numerically illustrated that work time savings could be even more substantial through plot consolidation.Concurrently, econometric analysis was conducted on household-based managerial economic data of dairy farmers to examine labor and productivity.
|
Free Research Field |
農業経済学
|
Academic Significance and Societal Importance of the Research Achievements |
酪農業において安定的な自給飼料生産は極めて重要である.その中で,草地の管理は大きな課題となるが,植生調査や植生改善の効果の検証と経営データとの接合は容易ではない.本研究ではハイパースペクトルカメラやドローンを用い,機械学習を用いて植生の識別を行った.また,酪農の経営データと結びつけ,計量経済分析を行った.得られた成果を普及させることで,より簡便な圃場の植生の識別,圃場管理の方法が示される.それらの自給飼料生産・管理が酪農経営に与える影響を定量的に分析したことで,草地管理が酪農経営にとっても重要であることが示唆された.
|