2022 Fiscal Year Research-status Report
複合型放射線画像検査診断支援システム開発に向けた最適検査の推論手法の検討
Project/Area Number |
20K18857
|
Research Institution | Hokkaido University of Science |
Principal Investigator |
谷川原 綾子 北海道科学大学, 保健医療学部, 講師 (50711884)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | MRI / 自然言語処理 / 深層学習 / 検査支援 |
Outline of Annual Research Achievements |
放射線画像検査における画像取得から診断までの一連のプロセスを支援する複合型放射線画像検査診断支援システムの開発を目指している。このシステムは、患者の主訴や病歴・治療経過等から、最適なMRIやCTなどの放射線検査の種類やその撮影手法を自動で選択することで、取得される画像の質・診療の質の向上を実現する。 これまで、人工知能技術Encoder-Decoderを利用した最適MRI検査プロトコル推薦ツールの開発を進めてきた。このシステムは、依頼科医師が作成したMRI検査依頼書の記載内容から最適なMRI撮影プロトコルの予測を行うものである。昨年までは、Encoder-Decoderの最適パラメータの検討をベクトル次元数と学習回数に焦点を当てて検討してきたが、今年度はEncoder-DecoderにICD-10コードを用いた病名・主訴を重視したモデルを組み込んだツールを組み込み、精度評価を行った。放射線科医の指示と比較した結果、脳MRIにおける造影検査では60.35%、非造影検査では66.16%の精度となり、従来のEncoder-Decoderモデルのみと比べると10~25%精度が上昇した結果となった。 上記と平行して、MRI検査関連文書を対象とした固有表現抽出器の開発も進めている。このツールは、文字列一致アルゴリズムにて病名を検出し、その病名にICD-10コードを付与する。公開されている形態素解析器と医学辞書用いた固有表現抽出法(従来法)と、本研究にて開発している固有表現抽出器の精度を、MRI検査依頼書を使用して評価した。その結果、従来法のPrecision、Recall、F-measureは66.3%、93.2%、77.5%、本研究で開発した手法は、それぞれ、91.6%、95.0%、93.2%となった。本研究で開発した固有表現抽出器が有用であることが示された。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
本年度は、これまでに開発した最適検査プロトコル予測ツールと、既存オントロジーを用いた病名、症状、画像所見等に関するナレッジモデルを融合したシステムを構築し、このシステムの精度評価を行う予定であったが、最適検査プロトコル予測ツールの改良に時間を要し予定通りの進捗とならなかった。
|
Strategy for Future Research Activity |
今年度は、最適検査プロトコル予測ツールと、既存オントロジーを用いた病名、症状、画像所見等に関するナレッジモデルを融合したシステムの構築とその精度評価を行う。
|
Causes of Carryover |
コロナウイルスの感染拡大の影響から、学会などの出張等がオンラインとなったことが原因である。論文投稿や学会参加に向けた諸費用に充てる。
|