2022 Fiscal Year Final Research Report
Development of a seamless simulation that that enables consistent transition of fracture stages from crack initiation to propagation
Project/Area Number |
20K19812
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60100:Computational science-related
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 破壊力学 / 損傷力学 / 計算力学 / き裂進展解析 / 計算力学 / 非局所アプローチ / Micromorphic approach / Petrov-Galerkin法 |
Outline of Final Research Achievements |
The objective of this study is to propose a numerical method that represents the transition process of discontinuity of displacement field in the middle stage of fracture for an end goal that realize seamlessly the transition from from the initial stage to the final stage. With the end of goal in mind, a numerical method in which the whole stages are represented by the same mathematical model based on the fracture mechanics is developed to coherently evaluate the effect of fatigue damage at the initial stage on the crack propagation at the final stage without any approximation method.
|
Free Research Field |
計算力学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、破壊の初期段階から最終段階へシームレスに移行するために、中間段階における変位場の不連続性が遷移する過程を表現可能なPetrov-Galerkin法およびMicromorphic approachに基づく非局所アプローチを提案した。双方の手法ともに埋込型損傷構成則の枠組みで定式化を行うことで、破壊の初期段階から最終段階までを力学的に首尾一貫して評価可能となった。さらに、有限被覆法と組み合わせることで、破壊の初期段階から最終段階へシームレスに移行可能な数値解析手法を構築した。
|