2022 Fiscal Year Final Research Report
Challenges in creating a model for predicting adverse drug reactions of drug candidates using a strategy of integrating algebraic and numerical computation
Project/Area Number |
20K20283
|
Project/Area Number (Other) |
17H06198 (2017-2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2017-2019) |
Research Field |
Algebra, Geometry, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Hibi Takayuki 大阪大学, 大学院情報科学研究科, 名誉教授 (80181113)
|
Co-Investigator(Kenkyū-buntansha) |
高木 達也 大阪大学, 大学院薬学研究科, 特任教授 (80144517)
|
Project Period (FY) |
2017-06-30 – 2023-03-31
|
Keywords | 代数計算 / 数値計算 / 医薬品候補化合物 / 分子記述子 / 最尤推定 |
Outline of Final Research Achievements |
The ever-evolving performance of computers and improvements in computational software contribute to the advancement of the mathematical sciences, where computation is essential. However, dramatic future developments in computation will depend on the dramatic evolution of algebraic computation. Algebraic and numerical computation have advantages and disadvantages in terms of efficiency and accuracy. The key to the success of research is to integrate the advantages of both. Currently, experts in numerical computation disregard algebraic computation as impractical, while experts in algebraic computation are more concerned with the theoretical aspects and lack collaborative work. This challenging research pioneered an original fusion theory between novel algebraic computation and existing numerical computation, and challenged the creation of a mathematical model to predict the probability of adverse drug reactions of drug candidate compounds.
|
Free Research Field |
計算可換代数と凸多面体論
|
Academic Significance and Societal Importance of the Research Achievements |
COVID-19 の流行に関連し、薬学と経済の観点から数理モデルを創ることに挑戦した。薬剤経済学の観点から探究するならば(1)PCR、抗体検査に必要な経費、(2)感染率、重症化率、死亡率、接触率、(3)人工呼吸器など、治療に必要な経費、等の情報が必要であるが、(2)と(3)などは未確定な要素である。おのおのの未知数がどのような値の場合、どのような治療デザイン(たとえば、「検査を絞って重症者のみを収容する」、「徹底的に検査し、陽性者、免疫獲得者を割り出し、 陽性者を囲い込む」など)が経済的に有効か、あるいは、死者数を少なくするのに有効かなどのシミュレーションを探究した。
|