2020 Fiscal Year Final Research Report
Development of advanced coating array technology and trial production of high-performance electrodes by elucidating the adhesion mechanism of methanogen
Project/Area Number |
20K20315
|
Project/Area Number (Other) |
17H06296 (2017-2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2017-2019) |
Research Field |
Environmental conservation measure and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Tada Chika 東北大学, 農学研究科, 准教授 (30413892)
|
Co-Investigator(Kenkyū-buntansha) |
関口 貴子 国立研究開発法人産業技術総合研究所, 材料・化学領域, 主任研究員 (50738086)
高橋 英志 東北大学, 環境科学研究科, 教授 (90312652)
|
Project Period (FY) |
2017-06-30 – 2021-03-31
|
Keywords | メタン菌 / カソード電極 / プリンタ / CNT / 分散 / 付着 |
Outline of Final Research Achievements |
With the goal of establishing "microorganism printer" that artificially and freely aligns and attaches methanogens to the electrode surface, (1) elucidation of the adhesion mechanism of methanogens, and (2) dispersion of highly attached CNT of methanogens (3) Accumulation methanogen on the electrode for a short time , and manufacture high-performance electrodes. As a result, (1) Methanothermobacter thermautotrophicus had a good adhesion to that COOH and OH groups on the electrode surface at a ratio of 1: 0.65, and (2) had a high affinity with single-layer supergrowth CNTs. In addition, BSA 0.5 mg / L was suitable as the CNT dispersion. (3) At -600 mV (vs. Ag/AgCl), methanogen adhered to 107 copies/electrode in 2 days. A 7.5-fold higher current density was obtained by microbial fuel cell which methanogen adhered twice as densely. As for the electrode orientation, the same methane conversion rate was obtained even with 1/10 of methanogen as compared with the non-alignment.
|
Free Research Field |
環境微生物学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、メタン菌をカソード電極とした高性能な微生物燃料電池の作製が可能になるための基礎データを得ることができた。これにより、これまで、白金などのレアメタルが必要だった、触媒反応が、メタン菌のような、どこでも手に入り、安価な材料として利用可能になること、また、CO2を有効なエネルギーガスのCH4に変換しながら、電力を得る新たな微生物燃料電池技術の基礎技術ができ、今後、その応用に向けての足掛かりを得た。
|