2021 Fiscal Year Final Research Report
Production of a high-energy polarized photon beam via Compton scattering of undulator soft X-rays
Project/Area Number |
20K20344
|
Project/Area Number (Other) |
18H05325 (2018-2019)
|
Research Category |
Grant-in-Aid for Challenging Research (Pioneering)
|
Allocation Type | Multi-year Fund (2020) Single-year Grants (2018-2019) |
Review Section |
Medium-sized Section 15:Particle-, nuclear-, astro-physics, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
鈴木 伸介 公益財団法人高輝度光科学研究センター, 光源基盤部門, 特別嘱託研究職員 (00416380)
伊達 伸 大阪大学, 核物理研究センター, 特任教授 (10372145)
清水 肇 東北大学, 電子光理学研究センター, 名誉教授 (20178982)
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Keywords | 光子ビーム / コンプトン散乱 / 軟X線 / アンジュレータ |
Outline of Final Research Achievements |
We carried out a pioneering research to produce an energy-extended photon beam via Compton scattering of high-intensity soft X-rays at BL07A of the electron storage ring "NewSUBARU". The soft X-rays were radiated from an undulator and backwardly reflected into the original storage ring by using a Mo/Si multi-layer mirror. The newly developed multi-layer mirror has a reflectance of 66% with a cylindrically polished surface so as to make a focus at the Compton scattering point. We succeeded in observing both radiated and reflected X-rays at a wire scanner detector that was installed in the middle of the beamline. In addition, we confirmed that prepared gamma-ray detectors (a PWO electromagnetic calorimeter and a beam profile monitor) satisfied the performance conditions required to measure the photon beam. We sufficiently attained the aim to develop fundamental techniques for the high-energy photon beam production based on the soft X-ray Compton scattering.
|
Free Research Field |
原子核(ハドロン)物理実験
|
Academic Significance and Societal Importance of the Research Achievements |
従来のレーザーコンプトン散乱に対し、本研究で研究開発する軟X線コンプトン散乱はGeV偏極光子ビームの効率的かつ飛躍的な高エネルギー化を実現する。これにより高質量領域まで拡張した次世代ハドロン光生成実験が可能となり、ハドロン構造等の解明に資する。軟X線生成とコンプトン散乱の双方を放射光施設のビームライン一本で完結させられ、比較的安価に必要設備を建設できる。主に核物理研究で利用されるコンプトン散乱の手法に加速器研究や放射光利用研究で進歩した軟X線制御技術を取り入れ、異分野融合型の世界的にユニークな新光源技術が得られる。低エネルギー化する放射光施設において応用が可能であり、成果の汎用性が高い。
|