• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of electron schlieren microscopy to visualize and measure the three-dimensional distribution of spatial electromagnetic fields

Research Project

  • PDF
Project/Area Number 20K20555
Research Category

Grant-in-Aid for Challenging Research (Pioneering)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 29:Applied condensed matter physics and related fields
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Harada Ken  国立研究開発法人理化学研究所, 創発物性科学研究センター, 上級研究員 (20212160)

Co-Investigator(Kenkyū-buntansha) 森 茂生  大阪公立大学, 工学(系)研究科(研究院), 教授 (20251613)
Project Period (FY) 2020-07-30 – 2023-03-31
Keywordsシュリーレン法 / ホロコーン照明法 / ラミノグラフィー / トリゴノグラフィー / 空間電磁場 / 広視野観察
Outline of Final Research Achievements

Schlieren electron microscopy that can visualize and measure a spatial electromagnetic field distribution inside the materials and around the specimens was developed by Schlieren microscopy as phase observation methods and by laminography as three-dimensional measurement techniques. With this developed microscopy by using non-interference-type thermal transmission electron microscopes, we succeeded to observe electromagnetic fields with a wider view area than that by electron holography.
Furthermore, Lorentz SEM/SIM methods that can visualize electromagnetic field in sub-mm area by using conventional scanning electron/ion microscopes, and Lorentz microscopy and electron holography that can observe the high electromagnetic fields of 500 mT were also developed.
As a result of this research, many technical methods for observing and visualizing the spatial electromagnetic fields have been practically realized and can be used for various applications.

Free Research Field

電子線物理学および電子顕微鏡学

Academic Significance and Societal Importance of the Research Achievements

本研究では、汎用型の電子顕微鏡を用いて電子線ホログラフィーなど実用化されている干渉計測法では計測が困難な、広範囲の空間電磁場の可視化を可能とする技術開発を行った。sub-mmサイズからsub-μmサイズまでを広く、かつ廉価にカバーできる電子顕微鏡手法である。今後、バイオ系を含む様々な装置開発、材料のマクロスコピックからメゾスコピックな物性解析に応用されるだけでなく、光学の原理、結像理論に根差している手法であるため、解析法の習得を通して、これら分野の教育にも利用されると期待される。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi