2023 Fiscal Year Final Research Report
Mechanism design of collective wisdom on inductive learning: Theory, experiments and simulations
Project/Area Number |
20K20766
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 7:Economics, business administration, and related fields
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2020-07-30 – 2024-03-31
|
Keywords | 帰納的学習 / コミュニケーション / 価格メカニズム / 高次予測 / 経験財 / 情報共有 |
Outline of Final Research Achievements |
This study aims to elucidate the relationship between inductive learning of boundedly rational agents and collective intelligence mechanisms by analyzing the learning processes through communication and information provision systems. The research involved communication analysis using a strategic argumentation model and examining the impact of information provision and environmental changes on market participants' behavior through asset market trading experiments. The results showed that the provision of short-term belief information promotes asset price fluctuations, while the provision of long-term belief information helps stabilize prices. Additionally, the effects of information sharing mechanisms were compared and examined through the design of information sharing systems and speech right trading systems.
|
Free Research Field |
理論経済学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、限定合理的主体の帰納的学習と集合知メカニズムの関係を明らかにすることを目的として、コミュニケーションと情報提供システムを分析した点で学術的意義が高い。特に、帰納的ゲーム理論の発展により、限定合理的主体の学習と認識形成過程を詳細に解明し、戦略的議論モデルを用いたコミュニケーション分析によって、意思決定プロセスへの影響を検証した。社会的意義としては、情報提供の方法が市場の安定性や価格形成に及ぼす影響を実証したことで、効果的な情報共有システムや発言権取引の設計に寄与し、実際の経済システムや政策設計に応用可能な知見を提供する。
|