2021 Fiscal Year Final Research Report
Demonstration of the superconducting Edelstein effect using atomic-layer crystals
Project/Area Number |
20K20904
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
UCHIHASHI Takashi 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, グループリーダー (90354331)
|
Project Period (FY) |
2020-07-30 – 2022-03-31
|
Keywords | 超伝導 / スピントロニクス / 原子層結晶 |
Outline of Final Research Achievements |
A detailed analysis was performed on the spin-orbit locking phenomenon that is the premise of the Edelstein effect regarding indium atomic layers. Since the spin scattering time obtained from the in-plane critical magnetic field and the electron elastic scattering time obtained from the sample conductivity are almost equal, it is understood that the dynamic spin-orbit locking effect with spin inversion plays an essential role in this system. discovered. This is a completely different mechanism from the static spin-orbit locking effect expected by the conventional theory. In addition, we succeeded in producing a fine conduction channel with a width of 10 um made from an atomic layer. We also developed an instrument that enables both STM measurement and electrical conduction measurement, which can operate at the lowest temperature of 0.4 K and under the maximum applied magnetic field of 9 T.
|
Free Research Field |
表面科学、低温量子物性
|
Academic Significance and Societal Importance of the Research Achievements |
ラシュバ型スピン軌道相互作用をもつ2次元超伝導体の面内臨界磁場は通常のパウリ限界を大きく超えることが、研究代表者の研究によって明らかにされていたが、その詳細な機構は未解明だった。今回スピン運動量ロッキングの動的な効果により時間反転対称性を保持したままスピン反転率が異常に増大することがその原因であることを明らかにした。この性質は、近年注目されている原子層厚さの2次元超伝導体の特徴的な性質の一つとして理解できる。原子層超伝導体は強い磁場や磁気相互作用と共存できるため、将来量子機能性材料として応用されることが期待できる。
|