2023 Fiscal Year Final Research Report
Design and synthesis of synthetic molecular motors that work at room temperature, normal pressure, and in water for biological applications
Project/Area Number |
20K21131
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 28:Nano/micro science and related fields
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
RAPENNE Gwenael 奈良先端科学技術大学院大学, 先端科学技術研究科, 教授 (60812576)
|
Co-Investigator(Kenkyū-buntansha) |
安原 主馬 奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (90545716)
西野 智雄 奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (60824878)
尾本 賢一郎 奈良先端科学技術大学院大学, 先端科学技術研究科, 特任助教 (40820056)
|
Project Period (FY) |
2020-07-30 – 2024-03-31
|
Keywords | Molecular motors / Ruthenium complexes / Functionalization / Water soluble / Fluorescent tag / Amphiphile / Single Molecule / Membrane integration |
Outline of Final Research Achievements |
Interest of molecular motors are well known, but it is still challenging to use them in real applications. In this project, molecular design and chemical synthesis were combined to prepare functionalized molecular motors ready to be incorporated in membranes to investigate their mechanical interaction and ultimately study their antimicrobial or anticancer activities. To explore the potential of our molecular motors in the expression of biological actions through their with mimic of cell membranes, the modification of our motor was necessary. First, it is needed that the anchoring part include some long alkyl chains which are know to incorporates in the lipidic membranes. Second, a fluorescent tag is required on the rotating subunit to allow the study of these motors anchored on the membranes by a fluorescence microscope. To reach this goal, we designed and synthesized an amphiphile motor functionalized with a Rhodamine fluorescent tag.
|
Free Research Field |
Design and synthesis of molecular machines
|
Academic Significance and Societal Importance of the Research Achievements |
実際の機械の構造や働きを分子で模倣した分子マシンは、省資源・省エネルギーの観点から究極のナノテクノロジーとなる可能性を有している。しかし依然として、分子スケールの動きをマクロスケールでの応用に繋げることは困難である。本研究では、生体膜との複合化および、その働きの可視化を指向した新たな分子モーターの設計・合成を行った。これらの新たな分子モーターは抗菌剤や抗がん剤と言った生理活性を有する分子マシンの開発につながる。
|