2022 Fiscal Year Final Research Report
Development of an artificial intelligence system to identify treatment strategies in long-term care services
Project/Area Number |
20K21775
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 59:Sports sciences, physical education, health sciences, and related fields
|
Research Institution | Kansai Medical University |
Principal Investigator |
HASE Kimitaka 関西医科大学, 医学部, 教授 (80198704)
|
Co-Investigator(Kenkyū-buntansha) |
田口 周 関西医科大学, 医学部, 助教 (40786191)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Keywords | 高齢者 / 動作分析 / 人工知能 / 介護保険 |
Outline of Final Research Achievements |
The clinical feature selection of baseline variables obtained from a quantitative motion analysis includes two aspects: understanding the biomechanical and pathophysiological mechanisms, and predicting the treatment outcome. In this study, a 3D motion database containing data on walking, stepping the stairs, picking things up from the floor, standing and sitting performance in 105 older adults aged 60 to 83 was created. A new insight to help improve clinical practice for geriatric rehabilitation can be derived from the expanded initial features. As an example, hierarchical cluster analysis of stair descent 3D data identified elderly participants with reduced balance ability as the extension type characterized by a backward tilt of the thighs and torso through the flexion of the knee joints as well as the rotation type characterized by a trunk rotation towards the trailing limb side during the controlled lowering phase.
|
Free Research Field |
Rehabilitation Medicine
|
Academic Significance and Societal Importance of the Research Achievements |
要介護・要支援者が抱える機能的問題を解明し、社会生活活動の拡大を図る介護保険診療において、本研究で構築した生活関連動作や併存疾患指標、認知機能スコアを含む歩行ならびに起居動作の3Dデータベースは、臨床的意思決定を助ける特徴量の重要度サンプリングを可能にする。転倒予防などの安全面と歩行耐久性といった活動再建の両面から網羅的にアプローチする治療アルゴリズムを形成することでリハビリテーション治療効果を最大化し、要介護・要支援者を支える家族を含めたQOL向上に寄与する。さらに、活動制限に影響している病態の理解を深め、その治療目標を可視化できるようになることで介護保険診療を担う療法士の教育に貢献する。
|