2022 Fiscal Year Final Research Report
Elucidation of the mechanisms of naturally occurring pollution-resistant bottom sediments: learning how to forge marine sediments.
Project/Area Number |
20K21871
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 64:Environmental conservation measure and related fields
|
Research Institution | Fisheries Research and Education Agency |
Principal Investigator |
Ito Katsutoshi 国立研究開発法人水産研究・教育機構, 水産技術研究所(廿日市), 主任研究員 (80450782)
|
Co-Investigator(Kenkyū-buntansha) |
中村 龍平 国立研究開発法人理化学研究所, 環境資源科学研究センター, チームリーダー (10447419)
伊藤 真奈 国立研究開発法人水産研究・教育機構, 水産技術研究所(廿日市), 研究員 (60735900)
|
Project Period (FY) |
2020-07-30 – 2023-03-31
|
Keywords | 環境電位 / 底質汚染 / 電位操作 / 底生動物 / 硫化物量 / 硫酸還元菌 / 細菌叢解析 |
Outline of Final Research Achievements |
Bottom sediments undergo pollution in coastal areas that are surrounded by industries; therefore, the state of the seafloor environment must be quickly assessed to halt the progression of pollution. We investigated the changes in bottom sediments after organic matter addition and artificial manipulation of bottom sediments to a positive potential, using the environmental potential as an indicator that changes in tandem with the metabolism and motility of benthic animals. Results showed that environmental potential and bacterial flora changed immediately after the addition of organic matter, while the quantity of acid volatile sulfide (AVS), which is also a standard environmental parameter, increased after a time lag of approximately 24 h. We successfully altered benthic bacterial flora and significantly reduced AVS values compared to those of the control through the artificial manipulation of the environmental potential of the bottom sediment.
|
Free Research Field |
環境保全学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の実施により、有機物による環境負荷は、環境を汚染させる原因という固定観念を覆すだけではなく、適切な、有機物負荷は、底質の自浄作用を増加させる。この結果は、過剰な有機物負荷により、深刻化している養殖場底質の汚染問題解決の糸口となるばかりでなく、電気化学の最大の利点である「任意のタイミング」で「任意の大きさ」の電流を底質環境に作り出せるという特徴を利用した、革新的かつ実践的な環境改善技術開発に向けた多くの『芽』を含んでいる。
|