2021 Fiscal Year Final Research Report
Automatic learning evaluation for unsynchronized e-Learning
Project/Area Number |
20K22193
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
:Education and related fields
|
Research Institution | Seikei University |
Principal Investigator |
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Keywords | オンライン講義 / オンデマンド講義 / 学習評価 / 不正防止 |
Outline of Final Research Achievements |
To prevent learners from doing something unrelated during online lectures, we propose an automatic evaluation method for learning behavior. This method extracts the pose of learners and their teacher by OpenPose, constructs a model that estimates the teacher’s pose in an online lecture from that of a learner, and evaluates them by measuring the difference between the estimated and actual values. The result of an experiment showed that this could detect unrelated actions in about 90% of instances.
|
Free Research Field |
教育工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により,オンライン会議等におけるカメラオフ時の聴講者の行動が,発表者の行動に対して反応しているかどうかを,発表者(管理者)の観察なしで評価できる手法を提案した.これは,通信教育機関における学習評価の補助的な情報になりうる他,テレワークなどでの勤怠評価にも応用可能である点に社会的意義が存在する.
|