• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

Geometry of autoequivalence groups via isometric actions on the space of stability conditions

Research Project

Project/Area Number 20K22310
Research InstitutionOsaka University

Principal Investigator

菊田 康平  大阪大学, 大学院理学研究科, 助教 (10880073)

Project Period (FY) 2020-09-11 – 2023-03-31
Keywordselliptic element / parabolic element
Outline of Annual Research Achievements

研究課題である「安定性条件の空間への等長作用を用いた自己同値群の幾何学的研究」について,まずは最終年度の成果について述べる.
(1)曲線の場合に,安定性条件の空間のThurstonコンパクト化を完全に調べた.楕円曲線の場合にホモロジー的ミラー対称性を介してNielsen-Thurston分類を与えた.また射影直線の場合に非常に興味深い現象が得られた.大内元気氏,小関直紀氏との共同研究である.
(2)私の2021年にプレプリントに書かれた球面捻りと交点数に関する予想が,Federico Barbacovi氏によって解かれたので,設定を大幅に一般化し共著として論文を出した.
(3)安定性条件の空間への等長作用に関するピカール数1のK3曲面の自己同値の分類について,elliptic elementとparabolic elementに関する研究を進めた.
また研究期間全体を通じて,Hochschild entropyの導入,三角圏の自己同値群の階数2の自由部分群の構成,K3曲面の自己同値群の中心群の決定,曲線の場合のThustonコンパクト化の構成などの成果が主に得られた.
今後は,引き続き安定性条件の空間上の距離空間の構造を用いた研究を進めていく.特に(3)と関連する等長作用に関する自己同値の分類は,elliptic elementに関して最近Fan-Laiによる進展があったが,まだまだ発展途上である.また球面対象のなすグラフ(または単体複体)の距離構造および等長作用の研究も進めていきたい.

  • Research Products

    (11 results)

All 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results)

  • [Int'l Joint Research] University College London(英国)

    • Country Name
      UNITED KINGDOM
    • Counterpart Institution
      University College London
  • [Int'l Joint Research] The University of Liverpool(英国)

    • Country Name
      UNITED KINGDOM
    • Counterpart Institution
      The University of Liverpool
  • [Journal Article] Hochschild Entropy and Categorical Entropy2022

    • Author(s)
      Kohei Kikuta, Genki Ouchi
    • Journal Title

      Arnold Mathematical Journal

      Volume: - Pages: -

    • DOI

      10.1007/s40598-022-00210-5

    • Peer Reviewed
  • [Journal Article] Curvature of the space of stability conditions2022

    • Author(s)
      Kohei Kikuta
    • Journal Title

      Manuscripta Mathematica

      Volume: - Pages: -

    • DOI

      10.1007/s00229-022-01389-9

    • Peer Reviewed
  • [Journal Article] Spherical twists, relations and the center of autoequivalence groups of K3 surfaces2022

    • Author(s)
      Federico Barbacovi, Kohei Kikuta
    • Journal Title

      arXiv:2210.00228

      Volume: - Pages: -

    • Open Access / Int'l Joint Research
  • [Journal Article] Thurston compactifications of spaces of stability conditions on curves2022

    • Author(s)
      Kohei Kikuta, Naoki Koseki, Genki Ouchi
    • Journal Title

      arXiv:2211.08001

      Volume: - Pages: -

    • Open Access / Int'l Joint Research
  • [Presentation] Autoequivalence groups of K3 surfaces and Mapping class groups2023

    • Author(s)
      Kohei Kikuta
    • Organizer
      The 8th KTGU Mathematics Workshop for Young Researchers
    • Int'l Joint Research / Invited
  • [Presentation] Spherical twists and the center of autoequivalence groups of K3 surfaces2022

    • Author(s)
      Kohei Kikuta
    • Organizer
      Guest talk in Lecture “Categories and dynamical systems” at Tsinghua University
    • Invited
  • [Presentation] K3曲面の自己同値群と写像類群: 距離空間への等長作用2022

    • Author(s)
      Kohei Kikuta
    • Organizer
      第69回幾何学シンポジウム
    • Invited
  • [Presentation] K3曲面の導来圏の自己同値群2022

    • Author(s)
      Kohei Kikuta
    • Organizer
      第67回代数学シンポジウム
    • Invited
  • [Presentation] Fixed points on the spaces of stability conditions and Thurston compactifications2022

    • Author(s)
      Kohei Kikuta
    • Organizer
      Workshop on Mirror symmetry and Related Topics Kyoto 2022
    • Int'l Joint Research / Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi