2021 Fiscal Year Final Research Report
Low-temperature solid-phase crystallization of oxide semiconductors and its application to high-performance flexible devices
Project/Area Number |
20K22415
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0302:Electrical and electronic engineering and related fields
|
Research Institution | Shimane University |
Principal Investigator |
Magari Yusaku 島根大学, 学術研究院理工学系, 助教 (20874887)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Keywords | 酸化物半導体 / 薄膜トランジスタ / 固相結晶化 / 水素化 / 高移動度 / 低温プロセス / フレキシブルデバイス / 電子デバイス |
Outline of Final Research Achievements |
Oxide semiconductors have been extensively studied as active channel layers of thin-film transistors (TFTs) for electronic applications. However, the field-effect mobility (μFE) of oxide TFTs is not sufficiently high to compete with that of low-temperature-processed polycrystalline-Si TFTs (50-100 cm2V-1s-1). Here, we propose a simple process to obtain high-performance TFTs, namely hydrogenated polycrystalline In2O3 (In2O3:H) TFTs grown via the low-temperature solid-phase crystallization (SPC) process. In2O3:H TFTs fabricated at 300 °C exhibit superior switching properties with μFE = 139.2 cm2V-1s-1. The hydrogen introduced during sputter deposition plays an important role in enlarging the grain size and decreasing the carrier density in SPC-prepared In2O3:H. We believe these SPC-grown In2O3:H TFTs have a great potential for use in future electronic applications.
|
Free Research Field |
半導体工学
|
Academic Significance and Societal Importance of the Research Achievements |
これまで酸化インジウム薄膜は太陽電池用の窓層(透明導電膜)として研究が活発であるが、金属的伝導を示し半導体としての用途は限定されていた。本研究では、酸化インジウムスパッタ成膜時に導入した水素がキャリア補償・結晶性制御に重要な役割を果たしていることを明らかにした。 固相結晶化In2O3:H薄膜は高移動度(> 130 cm2V-1s-1)・ワイドバンドギャップ(~3.7 eV)・低温プロセス(~300℃)、大面積均一性の特徴を有するため、高性能・低消費電力FETや、高精細・透明・フレキシブルディスプレイなどの次世代半導体材料への発展が期待できる。
|