• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of a method for examining of arterial compliance based on estimation method for flow rate and pressure head of ventricular assist device for quantitative assessment of heart failure risk

Research Project

  • PDF
Project/Area Number 20K22508
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0403:Biomedical engineering and related fields
Research InstitutionToyo University (2022)
Morinomiya University of Medical Sciences (2020-2021)

Principal Investigator

Shida Shuya  東洋大学, 理工学部, 助教 (20880347)

Project Period (FY) 2020-09-11 – 2023-03-31
Keywords心不全 / 補助人工心臓 / 遠心血液ポンプ / 大動脈コンプライアンス / 数値流体力学
Outline of Final Research Achievements

The purpose of this study is to develop a simple method to evaluate arterial compliance and circulatory support conditions from the information on the blood pump drive for a ventricular assist device (hereinafter referred to as "the evaluation method"), to propose a novel index for quantitative evaluation of heart failure risk. In this study, the relationship between the flow path design of a blood pump and the flow field in the pump was investigated by numerical calculation using a computer, and the flow path design suitable for the evaluation method was examined. We focused on variations in blood viscosity, impeller vane shape, radial clearance, and volute shape, and predicted the effects of changes in these design factors on pump hydraulic performance, pump control performance, and hemocompatibility. As a result, a useful pump design guideline was obtained for the application of the evaluation method to blood pumps.

Free Research Field

生体流体工学

Academic Significance and Societal Importance of the Research Achievements

本研究結果より,本検査手法の臨床応用に向けた手法の普遍化及び標準化のためのポンプ設計指針が得られた.この成果により,確立された本検査手法の技術は,補助人工心臓による在宅での患者血行動態モニタリング法開発への応用も期待できる.すなわち,人工心臓のスマート(多機能)化に関する研究分野に与えるインパクトも大きい.また,本検査手法が臨床普及されれば,心不全の予後と血管機能の相関に関するビッグデータが集積可能となる.これによって,動脈硬化性疾患の適切な治療戦略の構築や効果的な治療法の探索に人工知能が利用可能となることが期待できる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi