• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Neural Machine Translation Integrated with Knowledge Graph

Research Project

  • PDF
Project/Area Number 20K23325
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 1001:Information science, computer engineering, and related fields
Research InstitutionNara Institute of Science and Technology

Principal Investigator

Watanabe Taro  奈良先端科学技術大学院大学, 先端科学技術研究科, 教授 (90395038)

Project Period (FY) 2020-09-11 – 2022-03-31
Keywords機械翻訳 / 知識グラフ
Outline of Final Research Achievements

Neural machine translation demands huge data when training the translation model, although its performance has been drastically improved by deep learning. However, simply increasing training data does not assure that the trained model can fluently translate named entities, properties, e.g., date of birth, or relations with other objects, e.g., affiliations, since such knowledge will be updated almost every day. This work investigates a method to solve the issue by integrating multilingual a knowledge graph into machine translation, which is knowledge representation denoting attributes and relations of objects with partially multilingual annotation.
In this research, we proposed a machine translation model which integrates representations from knowledge graph that is trained by subword unit, not word-wise unit. Experimental results on machine translation tasks showed that named entities are translated correctly after our manual investigations.

Free Research Field

自然言語処理

Academic Significance and Societal Importance of the Research Achievements

本研究における知識グラフと機械翻訳を統合したモデルにより、知識を反映した機械翻訳を実現した。本手法により、人名や地名等の固有表現をより正しく翻訳できることを示している。今後は、知識グラフを更新することで機械翻訳モデルの再学習を全く必要としない機械翻訳モデルを実現することにより、各ドメインへと容易に適用可能、かつ、カスタマイズ可能なシステムの実現を目指す。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi