2022 Fiscal Year Final Research Report
Strain-Controlled Graphene-Nanoribbon-Base Biochemical Sensors with High Selectivity and Sensitivity
Project/Area Number |
20KK0083
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Suzuki Ken 東北大学, 工学研究科, 准教授 (40396461)
|
Co-Investigator(Kenkyū-buntansha) |
DAVEY THERESA 東北大学, 工学研究科, 特任助教 (10816987)
陳 迎 東北大学, 工学研究科, 教授 (40372403)
三浦 英生 東北大学, 工学研究科, 教授 (90361112)
|
Project Period (FY) |
2020-10-27 – 2023-03-31
|
Keywords | グラフェン / ひずみ制御 / ガスセンサ / バイオセンサ / CNT-グラフェン複合構造 |
Outline of Final Research Achievements |
This research project challenged the development of techniques to control the gas adsorption properties on the surface of graphene by applying strain as a fundamental technology to improve the sensitivity and selectivity of graphene-based biosensors and gas sensors. Together with a group from Tsinghua University in China, we demonstrated the control of graphene electronic band structure by applying strain and verified its effectiveness through fabrication and evaluation of biosensors and gas sensors. As a result, it was demonstrated that the gas adsorption properties of graphene can be controlled by applying strain and that the sensitivity of the sensors can be improve. In addition, first-principles calculations revealed that the response characteristics of the sensor under strain-loading conditions vary depending on the gas species, indicating the possibility of using the gas species dependence of strain sensitivity to improve the selectivity of the sensor.
|
Free Research Field |
材料化学
|
Academic Significance and Societal Importance of the Research Achievements |
グラフェン表面上のガス分子の吸着状態をひずみ負荷により制御し,センサ感度の向上が可能であることを実証した。この技術を応用し、任意のガス成分を優先的に吸着させるひずみ設計や、センサ応答のひずみ依存性分析による複数ガス成分の分離検出手法を開発することで、環境、ヘルスモニタリングデバイスに必要な小型・軽量なマルチガスセンサの実現が期待できる。また、本研究の実践により、グラフェンの高機能化や新機能の探索において「ひずみ」の活用の有用性が示されたことから、ひずみ負荷によるグラフェンの電子状態制御技術が多機能,省エネルギーな革新的グラフェンデバイスを実現する基盤技術として貢献できると考えている.
|