• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Development of Analysis on Evolving Pattern for Complicated Phenomena

Research Project

  • PDF
Project/Area Number 21224001
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Global analysis
Research InstitutionThe University of Tokyo

Principal Investigator

GIGA Yoshikazu  東京大学, 大学院数理科学研究科, 教授 (70144110)

Co-Investigator(Kenkyū-buntansha) YAMAMOTO Masahiro  東京大学, 大学院数理科学研究科, 教授 (50182647)
MATSUI Shin'ya  北海道情報大学, 情報メディア学部, 教授 (50219367)
FUNAKI Tadahisa  東京大学, 大学院数理科学研究科, 教授 (60112174)
ISHII Hitoshi  早稲田大学, 教育・総合科学学術院, 教授 (70102887)
JIMBO Shuichi  北海道大学, 大学院理学研究院数学部門, 教授 (80201565)
TONEGAWA Yoshihiro  北海道大学, 大学院理学研究院数学部門, 教授 (80296748)
Co-Investigator(Renkei-kenkyūsha) NISHIKAWA Takao  日本大学, 理工学部数学科, 准教授 (10386005)
Research Collaborator ABE Ken  
ISHII Katsuyuki  
UMEDA Noriaki  
ETO Tokuhiro  
OHTSUKA Takeshi  
GIGA Mi-Ho  
SEKI Yukihiro  
HAMAMUKI Nao  
POZAR Norbert  
MIURA Hideyuki  
MITAKE Hiroyoshi  
YONEDA Tsuyoshi  
LIU Qing  
Project Period (FY) 2009-04-01 – 2015-03-31
Keywords非線形現象 / 非線形偏微分方程式 / 粘性解 / 平均曲率流方程式 / 全変動流方程式
Outline of Final Research Achievements

Various phenomena in natural sciences, for example, crystal growth phenomena and fluid motion, etc. are often modeled by nonlinear partial differential equations. We describe evolution of complex shapes and patterns observed there as mathematical phenomena and analyze them by developing the theory of viscosity solutions, variational analysis and real analysis, etc. In evolution of shapes and patterns even if the evolution law is simple and the initial shape is smooth, the solution often develops singularities by forming corners after some time. It is necessary to extend notions of a solution in a suitable way to interpret non-differentiable functions as a solution of differential equations for further analysis. In this project we introduce several new notions of solutions of diffusion equations describing for example crystal growth or fluid motion. We prove the existence of such solutions and analyze their behavior. Moreover, we study relation between discrete and continuous models.

Free Research Field

数物系科学・数学・数学解析

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi