• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2010 Fiscal Year Annual Research Report

空間グラフの位相幾何学的研究

Research Project

Project/Area Number 21540099
Research InstitutionWaseda University

Principal Investigator

谷山 公規  早稲田大学, 教育・総合科学学術院, 教授 (10247207)

Keywords結び目 / 空間グラフ
Research Abstract

新國亮氏、花木良氏、山崎晶子氏との共同研究において、7頂点完全グラフからデルタワイ変形とワイデルタ変形で得られるグラフの任意の空間埋め込みは非自明結び目を含むかもしくは3成分の完全非分離絡み目を含むことを示した。
新國亮氏との共同研究において、新國亮氏によるConway-Gordonの定理の精密化定理が、6、7頂点完全グラフからデルタワイ変形で得られるグラフについても成立することを示した。
空間から空間への連続写像を一つ固定したとき、それによって結び目が結び目に写る場合に、結び目型がどのように変化しうるかを、いくつかの連続写像について考察した。具体的には、空間から空間への折り返し写像と、2重分岐被覆写像について、任意の結び目型が任意の結び目型へ写り得ることを示した。
3次元球面内の非自明な結び目に対して、3次元球面を部分空間として含む空間で、結び目がその空間内のある円板の境界となるような空間について考察した。特に3次元球面内の自明な絡み目を境界とする円板をその境界で抽象的に貼り合わせて得られた空間について考察した。そのような自明な絡み目の成分数の最小値は結び目の不変量になるが、従来の不変量との関係を考察した。
カテゴリーにおいて定義したマルティプリシティーという概念について、単項イデアル整域上の有限生成加群について考察した。単項イデアル整域上の有限生成加群が2つあり、それぞれからそれぞれへの単射が存在するとき、それらは同型であることを示した。また、それぞれからそれぞれへの全射が存在するとき、それらの写像は同型写像であることを示した。

  • Research Products

    (1 results)

All 2010

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] Circle immersions that can be divided into two arc embeddings2010

    • Author(s)
      Kouki Taniyama
    • Journal Title

      Proc.Amer.Math.Soc.

      Volume: 138 Pages: 743-751

    • Peer Reviewed

URL: 

Published: 2012-07-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi